Motivation: Cryo-electron microscopy (cryo-EM) is a powerful technique for studying macromolecules and holds the potential for identifying kinetically preferred transition sequences between conformational states. Typically, these sequences are explored within two-dimensional energy landscapes. However, due to the complexity of biomolecules, representing conformational changes in two dimensions can be challenging.
View Article and Find Full Text PDFIn single-particle cryo-electron microscopy (cryo-EM), efficient determination of orientation parameters for particle images poses a significant challenge yet is crucial for reconstructing 3D structures. This task is complicated by the high noise levels in the datasets, which often include outliers, necessitating several time-consuming 2D clean-up processes. Recently, solutions based on deep learning have emerged, offering a more streamlined approach to the traditionally laborious task of orientation estimation.
View Article and Find Full Text PDFThe functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction.
View Article and Find Full Text PDF2D classification plays a pivotal role in analyzing single particle cryo-electron microscopy images. Here, we introduce a simple and loss-less pre-processor that incorporates a fast dimension-reduction (2SDR) de-noiser to enhance 2D classification. By implementing this 2SDR pre-processor prior to a representative classification algorithm like RELION and ISAC, we compare the performances with and without the pre-processor.
View Article and Find Full Text PDF