Publications by authors named "Sztucki M"

Hypothesis: Due to its huge polar headgroup, octaoxyethylene octyl ether carboxylic acid (CECHCOOH = Akypo LF2™) is supposed not to be able to change its curvature sufficiently to form bicontinuous microemulsions. Instead, upon adding an oil to the binary water - surfactant system, excess oil could be squeezed out or a biliquid foam could form.

Experiments: An auto-dilution setup was used to record small-angle X-ray scattering data along six dilution lines in the newly established phase diagram of the ternary system 2-ethylhexanol - CECHCOOH - water.

View Article and Find Full Text PDF

Biomolecular structures are typically determined using frozen or crystalline samples. Measurement of intramolecular distances in solution can provide additional insights into conformational heterogeneity and dynamics of biological macromolecules and their complexes. The established molecular ruler techniques used for this (NMR, FRET, and EPR) are, however, limited in their dynamic range and require model assumptions to determine absolute distance or distance distributions.

View Article and Find Full Text PDF
Article Synopsis
  • Quantitative X-ray diffraction techniques need careful adjustments for sample transmission, especially in SAXS and WAXS experiments.
  • Typical beamstops used in X-ray nanoprobes can’t record transmission signals simultaneously with scattering data, which negatively impacts data quality.
  • The paper introduces a novel small beamstop with an embedded metal target to enhance fluorescence detection, allowing for accurate sample transmission measurements using a high-sensitivity avalanche photodiode.
View Article and Find Full Text PDF

Cardiac function relies on the autonomous molecular contraction mechanisms in the ventricular wall. Contraction is driven by ordered motor proteins acting in parallel to generate a macroscopic force. The averaged structure can be investigated by diffraction from model tissues such as trabecular and papillary cardiac muscle using collimated synchrotron beams, offering high resolution in reciprocal space.

View Article and Find Full Text PDF

Two protein interaction peaks are observed in pharmaceutically-relevant protein (serum albumin) : disaccharide 1 : 1 and 1 : 3 (w/w) freeze-dried systems for the first time. In samples with a higher disaccharide content, the protein-protein distances are longer for both populations, while the fraction of the protein population with a shorter protein-protein distance is lower. Both factors would favor better stability against aggregation for disaccharide-rich protein formulations.

View Article and Find Full Text PDF

Cellulose in solution can be assembled into textile fibers by wet-spinning (Viscose etc.) or dry-jet wet spinning (Lyocell, Ioncell etc.), which leads to significant differences in the mechanical properties of fibers.

View Article and Find Full Text PDF

Water-to-ice transformation results in a 10% increase in volume, which can have a significant impact on biopharmaceuticals during freeze-thaw cycles due to the mechanical stresses imparted by the growing ice crystals. Whether these stresses would contribute to the destabilization of biopharmaceuticals depends on both the magnitude of the stress and sensitivity of a particular system to pressure and sheer stresses. To address the gap of the "magnitude" question, a phospholipid, 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC), is evaluated as a probe to detect and quantify the freeze-induced pressure.

View Article and Find Full Text PDF

The assembly of polyoxometalate (POM) metal-oxygen clusters into ordered nanostructures is attracting a growing interest for catalytic and sensing applications. However, assembly of ordered nanostructured POMs from solution can be impaired by aggregation, and the structural diversity is poorly understood. Here, we present a time-resolved small-angle X-ray scattering (SAXS) study of the co-assembly in aqueous solutions of amphiphilic organo-functionalized Wells-Dawson-type POMs with a Pluronic block copolymer over a wide concentration range in levitating droplets.

View Article and Find Full Text PDF
Article Synopsis
  • The use of magnetic fields to control colloidal nanoparticles is advancing the development of microrobots for applications like drug delivery and surgery.
  • Researchers demonstrated the ability to control the movement of hematite spindles using dynamic magnetic fields, which is crucial for creating smaller nanorobots.
  • The findings show that the motion patterns of these nanoscale spindles resemble those of larger particles, indicating their potential for effective locomotion in future magnetic nanorobots.
View Article and Find Full Text PDF

The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial.

View Article and Find Full Text PDF

Background: Polyhydroxycompounds (PHC) are used as lyoprotectors to minimize aggregation of pharmaceutical proteins during freeze-drying and storage.

Methods: Lysozyme/PHC mixtures with 1:1 and 1:3 (w/w) ratios are freeze-dried from either HO or DO solutions. Disaccharides (sucrose and trehalose), monosaccharide (glucose), and sugar alcohol (sorbitol) are used in the study.

View Article and Find Full Text PDF

The new technical features and enhanced performance of the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF are described. The beamline enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales and down to the sub-millisecond time range by combining different small-angle X-ray scattering techniques in a single instrument. In addition, a nearly coherent beam obtained in the high-resolution mode allows multispeckle X-ray photon correlation spectroscopy measurements down to the microsecond range over the ultra-small- and small-angle regions.

View Article and Find Full Text PDF

The addition of gallium ions to a solution of a double-hydrophilic block copolymer, i.e. poly(ethylene oxide)-block-poly(acrylic acid), leads to the spontaneous formation of highly monodisperse micelles with a Hybrid PolyIon Complexes (HPICs) core.

View Article and Find Full Text PDF

Understanding the complex structure of polymer blends filled with nanoparticles (NPs) is key to design their macroscopic properties. Here, the spatial distribution of hydrogenated (H) and deuterated (D) polymer chains asymmetric in mass is studied by small-angle neutron scattering. Depending on the chain mass, a qualitatively new large-scale organization of poly(vinyl acetate) chains beyond the random-phase approximation is evidenced in nanocomposites with attractive polymer-silica interactions.

View Article and Find Full Text PDF

In highly selective solvents, block copolymers (BCPs) form association colloids, while in solvents with poor selectivity, they exhibit a temperature-controlled (de)mixing behavior. Herein, it is shown that a temperature-responsive self-assembly behavior emerges in solvent mixtures of intermediate selectivity. A biocompatible poly-ethylene(oxide)--poly-ε-caprolactone (PEO-PCL) BCP is used as a model system.

View Article and Find Full Text PDF

The breakdown and buildup mechanisms in concentrated cellulose nanocrystal (CNC) suspensions under shear and during relaxation upon cessation of shear were accessed by small-angle X-ray and light scattering combined with rheometry. The dynamic structural changes over nanometer to micrometer lengthscales were related to the well-known three-regime rheological behavior. In the shear-thinning regime I, the large liquid crystalline domains were progressively fragmented into micrometer-sized tactoids, with their cholesteric axis aligned perpendicular to the flow direction.

View Article and Find Full Text PDF

Mannitol, a common pharmaceutical ingredient, exhibits complex polymorphism even in simple binary mannitol/water mixtures, with four crystalline forms observed. In this investigation, time/temperature-resolved synchrotron X-ray diffraction measurements are performed during freezing and thawing of mannitol/water mixtures. Mannitol crystallization depends strongly on the cooling rate and is initiated during cooling, if the cooling rate is lower than the critical cooling rate; otherwise, mannitol remains amorphous during freezing and crystallizes during subsequent heating above -30 °C.

View Article and Find Full Text PDF

Phase transitions of poloxamer 188 (P188) aqueous solutions at freezing temperatures are investigated using small-angle neutron scattering (SANS) and small- and wide-angle X-ray scatterings (SAXS and WAXS). It is shown that P188 solution (10%) undergoes the following sequence of phase transitions during cooling from 25 to -150 °C: micelle solution, solution of monomers, two-phase mixture of liquid crystalline mesophase + ice, and finally crystalline P188 + ice. Formation of the liquid crystalline phase during freezing is likely to be triggered by water freezing to ice and corresponding freeze concentration of the remaining solution.

View Article and Find Full Text PDF

We have used time-resolved small-angle X-ray scattering (SAXS) to study the adhesion of lipid vesicles in the electrostatic strong-coupling regime induced by divalent ions. The bilayer structure and the interbilayer distance dw between adhered vesicles was studied for different DOPC:DOPS mixtures varying the surface charge density of the membrane, as well as for different divalent ions, such as Ca2+, Sr2+, and Zn2+. The results are in good agreement with the strong coupling theory predicting the adhesion state and the corresponding like-charge attraction based on ion-correlations.

View Article and Find Full Text PDF

Softness and firmness are seemingly incompatible traits that synergize to create the unique soft-yet-firm tactility of living tissues pursued in soft robotics, wearable electronics, and plastic surgery. This dichotomy is particularly pronounced in tissues such as fat that are known to be both ultrasoft and ultrafirm. However, synthetically replicating this mechanical response remains elusive since ubiquitously employed soft gels are unable to concurrently reproduce tissue firmness.

View Article and Find Full Text PDF

Scattering techniques with neutrons and X-rays are powerful methods for the investigation of the hierarchical structure of reinforcing fillers in rubber matrices. However, when using only X-ray scattering, the independent determination of the filler response itself sometimes remains an issue because of a strong parasitic contribution of the ZnO catalyst and activator in the vulcanization process. Microscopic characterization of filler-rubber mixtures even with only catalytic amounts of ZnO is, therefore, inevitably complex.

View Article and Find Full Text PDF

Monte Carlo simulations, fully constrained by experimental parameters, are found to agree well with a measured phase diagram of aqueous dispersions of nanoparticles with a moderate size polydispersity over a broad range of salt concentrations, c_{s}, and volume fractions, ϕ. Upon increasing ϕ, the colloids freeze first into coexisting compact solids then into a body centered cubic phase (bcc) before they melt into a glass forming liquid. The surprising stability of the bcc solid at high ϕ and c_{s} is explained by the interaction (charge) polydispersity and vibrational entropy.

View Article and Find Full Text PDF

In globular protein systems, upper critical solution temperature (UCST) behavior is common, but lower critical solution temperature (LCST) phase transitions are rare. In addition, the temperature sensitivity of such systems is usually difficult to tune. Here we demonstrate that the charge state of globular proteins in aqueous solutions can alter their temperature-dependent phase behavior.

View Article and Find Full Text PDF

In this work, we combine experiments and molecular simulations to unveil the hidden allosteric propensity of a thermophilic malate dehydrogenase protein (MDH). We provide evidence that, at its working temperature, the nonallosteric MDH takes a compact structure because of internal dewetting and reorganizes the active state toward functional conformations similar to its homologous allosteric LDHs. Moreover, a single-point mutation confers on the MDH a cooperative behavior that mimics an allosteric LDH.

View Article and Find Full Text PDF

A dramatic improvement is reported in the stability of colloidal particles when stabilizing surface grafts are systematically shortened from small polymers to single monomers. The colloidal dispersions consist of fluorinated latex particles, exhibiting a weak van der Waals attraction, with grafted steric layers of poly(ethylene glycol) (PEG) of different chain lengths. Using an effective salting-out electrolyte, NaCO, particle aggregates are detected above a threshold salt concentration that is independent of the particle concentration.

View Article and Find Full Text PDF