Publications by authors named "Szoke B"

Article Synopsis
  • The Carpathian Basin experienced significant demographic changes during the Early Medieval period, influenced by Avar rule for about 250 years and the arrival of early Hungarians in the late 9th century CE.
  • This study analyzes 296 ancient genetic samples from Western Hungary, providing insights into the population structure and dynamics between the 5th and 11th centuries CE, focusing on specific microregions.
  • The research uncovers distinct historical developments in Transdanubia, emphasizing the complex interactions and genetic integration among Hun, Avar, and Hungarian groups during and after the conquest period.
View Article and Find Full Text PDF

The causative agent of tuberculosis is still a widespread pathogen, which caused the death of ca. 1.6 million people globally in 2021.

View Article and Find Full Text PDF

Leukotrienes, a class of inflammatory bioactive lipids, are well studied in the periphery, but less is known of their importance in the brain. We identified that the enzyme leukotriene A4 hydrolase (LTA4H) is expressed in healthy mouse neurons, and inhibition of LTA4H in aged mice improves hippocampal dependent memory. Single-cell nuclear RNA sequencing of hippocampal neurons after inhibition reveals major changes to genes important for synaptic organization, structure, and activity.

View Article and Find Full Text PDF

Autoantibodies targeting the lung tissue were identified in severe COVID-19 patients in this retrospective study. Fifty-three percent of 104 patients developed anti-pulmonary antibodies, the majority of which were IgM class, suggesting that they developed upon infection with SARS-CoV-2. Anti-pulmonary antibodies correlated with worse pulmonary function and a higher risk of multiorgan failure that was further aggravated if 3 or more autoantibody clones were simultaneously present (multi-producers).

View Article and Find Full Text PDF

Targeting immune-mediated, age-related, biology has the potential to be a transformative therapeutic strategy. However, the redundant nature of the multiple cytokines that change with aging requires identification of a master downstream regulator to successfully exert therapeutic efficacy. Here, we discovered CCR3 as a prime candidate, and inhibition of CCR3 has pro-cognitive benefits in mice, but these benefits are not driven by an obvious direct action on central nervous system (CNS)-resident cells.

View Article and Find Full Text PDF

DNA recovery from ancient human remains has revolutionized our ability to reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the identification of skeletal elements, such as the cochlear part of the osseous inner ear, that provides optimal contexts for DNA preservation; however, the rich genetic information obtained from the cochlea must be counterbalanced against the loss of morphological information caused by its sampling. Motivated by similarities in developmental processes and histological properties between the cochlea and auditory ossicles, we evaluate the ossicles as an alternative source of ancient DNA.

View Article and Find Full Text PDF

The over-expression and aggregation of α-synuclein (αSyn) are linked to the onset and pathology of Parkinson's disease. Native monomeric αSyn exists in an intrinsically disordered ensemble of interconverting conformations, which has made its therapeutic targeting by small molecules highly challenging. Nonetheless, here we successfully target the monomeric structural ensemble of αSyn and thereby identify novel drug-like small molecules that impact multiple pathogenic processes.

View Article and Find Full Text PDF

Objective: The prevalence of hyperostosis frontalis interna (HFI) was examined in different periods of the Carpathian Basin from 4900 BCE to 17th century AD. The study seeks to evaluate temporal changes in HFI and the possible impact of lifestyle on it.

Materials: The studied material consisted of 4668 crania from Hungary and Serbia.

View Article and Find Full Text PDF

The nitrergic neuron population and certain aspects of their connectivity (peptidergic inputs, co-localization with GABA, synaptic target distribution) were studied in the medial septum of the rat brain. The histochemical localization of NADPH diaphorase and immunohistochemical identification of nNOS at light and electron microscopic level was applied. Double-labeling experiments with galanin and leucine enkephalin, moreover the postembedding GABA immunogold staining was also carried out.

View Article and Find Full Text PDF

We present here a new procedure to represent the 3D distribution of neuronal cell bodies within the brain, using exclusively softwares free for research purposes. Our technique is based on digitalized photos of brain slices processed by immunohistochemical technique, and the 3D Slicer software. The technique presented enables transposition of immunohistochemical or in situ hybridization data to the stereotaxic mouse brain atlas (e.

View Article and Find Full Text PDF

Consumption of high-energy diets may compromise health and may also impair cognition; these impairments have been linked to tasks that require hippocampal function. Conversely, food restriction has been shown to improve certain aspects of hippocampal function, including spatial memory and memory persistence. These diet-dependent functional changes raise the possibility that the synaptic structure underlying hippocampal function is also affected.

View Article and Find Full Text PDF

The effect of 40% partial food deprivation was studied on the immunohistochemically detectable amount of glial fibrillary acidic protein (GFAP) - the specific marker of astroglia - in the dorsal subnucleus of lateral septum (LS) of male, intact and ovariectomized (OVX) female rats. Animals were either fed ad libitum (control) or 40% food deprived for one week, then perfusion-fixed, their brains removed, and serial vibratome sections were processed for the immunocytochemical localization of GFAP. Computeraided densitometry was carried out on digital photographs.

View Article and Find Full Text PDF

Herein we describe the structure-activity relationship (SAR) of amino-caprolactam analogs derived from amino-caprolactam benzene sulfonamide 1, highlighting affects on the potency of γ-secretase inhibition, selectivity for the inhibition of APP versus Notch processing by γ-secretase and selected pharmakokinetic properties. Amino-caprolactams that are efficacious in reducing the cortical Aβ(x-40) levels in FVB mice via a single 100 mpk IP dose are highlighted.

View Article and Find Full Text PDF

Introduction: Inhibition of gamma-secretase presents a direct target for lowering Aβ production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy.

View Article and Find Full Text PDF

The morphological features and distribution of cocaine- and amphetamine-regulated transcript peptide immunoreactivity (CART-IR) were studied in the lateral septum (LS) of male rats using light and electron microscopic immunocytochemistry and computer-aided densitometry. CART-IR was detected along the rostrocaudal axis of the LS in varicose axonal fibers only, although immunoreactive cell bodies and dendrites were not detected. Pericellular basket-like arrangements around immunonegative cell bodies were present.

View Article and Find Full Text PDF

The B1 receptor is an attractive target for the treatment of pain and inflammation. A series of 3-carboxamido-5-phenacylamino pyrazole B1 receptor antagonists are described that exhibit good potency against B1 and high selectivity over B2. Initially, N-unsubstituted pyrazoles were studied, but these compounds suffered from extensive glucuronidation in primates.

View Article and Find Full Text PDF

The bradykinin B(1) receptor plays a critical role in chronic pain and inflammation, although efforts to demonstrate efficacy of receptor antagonists have been hampered by species-dependent potency differences, metabolic instability, and low oral exposure of current agents. The pharmacology, pharmacokinetics, and analgesic efficacy of the novel benzamide B(1) receptor antagonist 7-chloro-2-[3-(9-pyridin-4-yl-3,9-diazaspiro[5.5]undecanecarbonyl)phenyl]-2,3-dihydro-isoindol-1-one (ELN441958) is described.

View Article and Find Full Text PDF

Several novel N-type voltage sensitive calcium channel blockers showed high affinity in the IMR32 assay and efficacy in the anti-writhing model. Herein, we describe the design, synthesis, SAR studies, biological data, physicochemical properties and pharmacokinetics of this 4-piperidinylaniline series.

View Article and Find Full Text PDF

Our drug discovery efforts for N-type calcium channel blockers in the 4-piperidinylaniline series led to the discovery of an orally active analgesic agent 26.1-[4-Dimethylamino-benzyl)-piperidin-4-yl]-[4-(3,3-dimethyl-but yl)-phenyl]-(3-methyl-but-2-enyl)amine (26) showed high affinity to functionally block N-type calcium channels (IC50=0.7 microM in the IMR32 assay) and exhibited high efficacy in the anti-writhing analgesia test with mice (ED50=12 mg/kg by po and 4 mg/kg by iv).

View Article and Find Full Text PDF

Exploration of the SAR around the leucine side chain in a series of N,N-dialkyldipeptidylamines with potent functional activity at N-type VSCC is presented. A novel analog is disclosed which possesses improved aqueous solubility, in vivo activity in an audiogenic seizure model, and reversible blockade in electrophysiological assays.

View Article and Find Full Text PDF

In this article, the rationale for the design, synthesis, and biological evaluation of a series of N-type voltage-sensitive calcium channel (VSCC) blockers is described. N-Type VSCC blockers, such as ziconotide, have shown utility in several models of stroke and pain. Modification of the previously reported lead, 1a, led to several 4-(4-benzyloxylphenyl)piperidine structures with potent in vitro and in vivo activities.

View Article and Find Full Text PDF

Selective N-Type Voltage Sensitive Calcium Channel (VSCC) antagonists have shown utility in several models of pain and ischemia. We report the structure-activity relationship at the proximal phenyl group in a series of non-peptidyl VSCC blockers.

View Article and Find Full Text PDF

Voltage activated calcium channel (VACC) blockers have been demonstrated to have utility in the treatment of stroke and pain. A series of aminomethyl substituted phenol derivatives has been identified with good functional activity and selectivity for N-type VACC's over sodium and potassium channels. The methods of synthesis and preliminary pharmacology are discussed herein.

View Article and Find Full Text PDF

Selective N-type voltage sensitive calcium channel (VSCC) blockers have shown efficacy in several animal models of stroke and pain. In the process of searching for small molecule N-type calcium channel blockers, we have identified a series of N-methyl-N-aralkyl-peptidylamines with potent functional activity at N-type VSCCs. The most active compound discovered in this series is PD 173212 (11, IC50 = 36 nM in the IMR-32 assays).

View Article and Find Full Text PDF