Proc Natl Acad Sci U S A
December 2009
Cystic fibrosis (CF) is a pleiotropic disease, originating from mutations in the CF transmembrane conductance regulator (CFTR). Lung injuries inflicted by recurring infection and excessive inflammation cause approximately 90% of the morbidity and mortality of CF patients. It remains unclear how CFTR mutations lead to lung illness.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2009
Strong voltage sensitivity of inward-rectifier K(+) (Kir) channels has been hypothesized to arise primarily from an intracellular blocker displacing up to five K(+) ions from the wide, intracellular part of the ion conduction pore outwardly across the narrow ion-selectivity filter. The validity of this hypothesis depends on two assumptions: (i) that five ion sites are located intracellular to the filter and (ii) that the blocker can force essentially unidirectional K(+) movement in a pore region generally wider than the combined dimensions of the blocker plus a K(+) ion. Here we present a crystal structure of the cytoplasmic portion of a Kir channel with five ions bound and demonstrate that a constriction near the intracellular end of the pore, acting as a gasket, prevents K(+) ions from bypassing the blocker.
View Article and Find Full Text PDFGlobular proteins often contain structurally well-resolved internal water molecules. Previously, we reported results from a molecular dynamics study that suggested that buried water (Wat3) may play a role in modulating the structure of the FK506 binding protein-12 (FKBP12) (Park and Saven, Proteins 2005; 60:450-463). In particular, simulations suggested that disrupting a hydrogen bond to Wat3 by mutating E60 to either A or Q would cause a structural perturbation involving the distant W59 side chain, which rotates to a new conformation in response to the mutation.
View Article and Find Full Text PDFA crystal structure has been obtained for a 26-nucleotide RNA that contains the loop E sequence from Chromatium minutissimum. Rather than having a loop E-like conformation, it consists of an A-form helix that splits into two separate strands following a sheared A-G base pair. The backbone of the strand containing the G of the A-G pair makes a turn of almost 180 degrees in the space of two nucleotides, and then interacts with the minor groove of the helix from which it originates.
View Article and Find Full Text PDF