Water scarcity is the main factor driving the enhancement of available technologies and the development of new technologies [...
View Article and Find Full Text PDFNatural Deep Eutectic Solvents (NADES) are composed of supramolecular interactions of two or more natural compounds, such as organic acids, sugars, and amino acids, and they are being used as a new media alternative to conventional solvents. In this study, a new application of NADES is presented as a possible technology for biofilm structural breaker in complex systems since the current solvents used for biofilm cleaning and extraction of biofilm components use hazardous solutions. The NADES (betaine:urea:water and lactic acid:glucose:water) were analyzed before and after the biofilm treatment by attenuated total reflection Fourier-transform infrared spectroscopy and fluorescence excitation-emission matrix spectroscopy.
View Article and Find Full Text PDFA novel magnetic resonance measurement (MRM) protocol for non-invasive monitoring of fouling in spiral wound reverse osmosis (SWRO) membrane modules is demonstrated. Sodium alginate was used to progressively foul a commercial SWRO membrane at industrially relevant operating conditions in a circulating flow loop. The MRM protocol showcased the following: (i) earlier, more sensitive detection and quantification of fouling in the membrane module compared to feed-channel pressure drop.
View Article and Find Full Text PDFRoutine chemical cleaning with the combined use of sodium hydroxide (NaOH) and hydrochloric acid (HCl) is carried out as a means of biofouling control in reverse osmosis (RO) membranes. The novelty of the research presented herein is in the application of urea, instead of NaOH, as a chemical cleaning agent to full-scale spiral-wound RO membrane elements. A comparative study was carried out at a pilot-scale facility at the Evides Industriewater DECO water treatment plant in the Netherlands.
View Article and Find Full Text PDFThis study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer.
View Article and Find Full Text PDFFeed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydrodynamic behavior of various feed spacer geometries suggested that the impact of spacers on hydrodynamics and biofouling can be improved.
View Article and Find Full Text PDFMicro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.
View Article and Find Full Text PDF