Publications by authors named "Szentmiklosi A"

The receptorial responsiveness method (RRM) is a procedure that is based on a simple nonlinear regression while using a model with two variables (X, Y) and (at least) one parameter to be determined (c). The model of RRM describes the co-action of two agonists that consume the same response capacity (due to the use of the same postreceptorial signaling in a biological system). While using RRM, uniquely, an acute increase in the concentration of an agonist (near the receptors) can be quantified (as c), via evaluating E/c curves that were constructed with the same or another agonist in the same system.

View Article and Find Full Text PDF

Based on results, recently we have assumed that FSCPX, an irreversible A₁ adenosine receptor antagonist, inhibits the action of NBTI that is apparent on / curves of adenosine receptor agonists. As a mechanism for this unexpected effect, we hypothesized that FSCPX might modify the equilibrative and NBTI-sensitive nucleoside transporter (ENT1) in a way that allows ENT1 to transport adenosine but impedes NBTI to inhibit this transport. This assumption implies that our method developed to estimate receptor reserve for agonists with short half-life such as adenosine, in its original form, overestimates the receptor reserve.

View Article and Find Full Text PDF

The term receptor reserve, first introduced and used in the traditional receptor theory, is an integrative measure of response-inducing ability of the interaction between an agonist and a receptor system (consisting of a receptor and its downstream signaling). The underlying phenomenon, i.e.

View Article and Find Full Text PDF

The A1 adenosine and M2 muscarinic receptors exert protective (including energy consumption limiting) effects in the heart. We investigated the influence of adenosine deaminase (ADA) inhibition on a representative energy consumption limiting function, the direct negative inotropic effect elicited by the A1 adenosinergic and M2 muscarinergic systems, in eu- and hyperthyroid atria. Furthermore, we compared the change in the interstitial adenosine level caused by ADA inhibition and nucleoside transport blockade, two well-established processes to stimulate the cell surface A1 adenosine receptors, in both thyroid states.

View Article and Find Full Text PDF

Adenosine is a ubiquitous, endogenous purine involved in a variety of physiological and pathophysiological regulatory mechanisms. Adenosine has been proposed as an endogenous antiarrhythmic substance to prevent hypoxia/ischemia-induced arrhythmias. Adenosine (and its precursor, ATP) has been used in the therapy of various cardiac arrhythmias over the past six decades.

View Article and Find Full Text PDF

Stimulation of β-adrenergic receptors in the heart is the most effective endogenous way to increase the mechanical performance of cardiac tissues to meet the requirements of a fight-or-flight situation or stress. On the other hand, sustained activation of cardiac β-receptors initiates maladaptive remodeling of the myocardium leading to cardiomyopathies and heart failure. Since both acute and chronic stimulation of β-adrenoceptors are arrhythmogenic, the application of β-receptor blockers exerts effective antiarrhytmic actions at both short and long time scale.

View Article and Find Full Text PDF

Hyperthyroidism elevates cardiovascular mortality by several mechanisms, including increased risk of ischemic heart disease. Therefore, therapeutic strategies, which enhance tolerance of heart to ischemia-reperfusion injury, may be particularly useful for hyperthyroid patients. One promising cardioprotective approach is use of agents that cause (directly or indirectly) A1 adenosine receptor (A1 receptor) activation, since A1 adenosinergic pathways initiate protective mechanisms such as ischemic preconditioning.

View Article and Find Full Text PDF

Although the A1 adenosine receptor (A1 receptor), the main adenosine receptor type in cardiac muscle, is involved in powerful cardioprotective processes such as ischemic preconditioning, the atrial A1 receptor reserve has not yet been quantified for the direct negative inotropic effect of adenosine. In the present study, adenosine concentration-effect (E/c) curves were constructed before and after pretreatment with FSCPX (8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine), an irreversible A1 receptor antagonist, in isolated guinea pig atria. To prevent the intracellular elimination of the administered adenosine, NBTI (S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine), a nucleoside transport inhibitor, was used.

View Article and Find Full Text PDF

A1 adenosine receptors (A1 receptors) are widely expressed in mammalian tissues; therefore attaining proper tissue selectivity is a cornerstone of drug development. The fact that partial agonists chiefly act on tissues with great receptor reserve can be exploited to achieve an appropriate degree of tissue selectivity. To the best of our knowledge, the A1 receptor reserve has not been yet quantified for the atrial contractility.

View Article and Find Full Text PDF

The aim of the present study was to investigate whether or not thyroxine (T(4)) treatment affects K(B), the equilibrium dissociation constant of the antagonist-receptor complex, for the interaction between CPX, a selective and competitive orthosteric antagonist, and the guinea pig atrial A1 adenosine receptor A1 receptor). The inotropic response to adenosine, a nonselective adenosine receptor agonist, or CPA, a selective A1 receptor agonist, was investigated in the absence or presence of CPX in paced left atria isolated from 8-day solvent- or T(4)-treated guinea pigs. To obtain K(B) values, adenosine and CPA concentration-response curves were evaluated by Schild analysis.

View Article and Find Full Text PDF

Methylxanthines, such as theophylline, have been used to treat cardiorespiratory disorders, whereas caffeine is the most widely consumed psychoactive agent in various soft drinks. Because of the worldwide use of these drugs and the recently synthesized xanthine derivatives, an intensive research on the cardiac actions of these substances is under progress. This review focuses on the molecular mechanisms involved in the actions of xanthine derivatives with special reference to their adenosine receptor antagonistic properties.

View Article and Find Full Text PDF

Action potential voltage-clamp (APVC) is a technique to visualize the profile of various currents during the cardiac action potential. This review summarizes potential applications and limitations of APVC, the properties of the most important ion currents in nodal, atrial, and ventricular cardiomyocytes. Accordingly, the profiles ("fingerprints") of the major ion currents in canine ventricular myocytes, i.

View Article and Find Full Text PDF

This review focuses on the potential role of site- and event-selective adenosinergic drugs in the treatment of cardiovascular diseases. Adenosine is released from the myocardium and vessels in response to various forms of stress and acts on four receptor subtypes (A1, A2A, A2B and A3). Adenosine is an important endogenous substance with important homeostatic activity in the regulation of cardiac function and circulation.

View Article and Find Full Text PDF

The study has analysed the action of histamine in the rabbit venous system and evaluated its potential role in contraction during increased venous pressure. We have found that a great variety exists in histamine sensitivity and H(1) -histamine receptor expression in various types of rabbit veins. Veins of the extremities (saphenous vein, femoral vein, axillary vein) and abdomen (common iliac vein, inferior vena cava) responded to histamine by a prominent, concentration-dependent force generation, whereas great thoracic veins (subclavian vein, superior vena cavas, intrathoracic part of inferior vena cava) and a pelvic vein (external iliac vein) exhibited slight sensitivity to exogenous histamine.

View Article and Find Full Text PDF

Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails.

View Article and Find Full Text PDF

Background: Surgical neonates with complex intestinal conditions, such as enterocolitis, midgut volvulus with bowel loss and multiple atresias, often require temporary stomas. Little is known on the postsurgical response of the altered gut segments, although adaptation is an important consideration in neonatal postoperative care, particularly after stoma closure.

Materials And Methods: Rats underwent bowel resection at a point 15 cm proximal to the ileocecal valve, and a split ileostomy was performed.

View Article and Find Full Text PDF

Acetylcholine (ACh) is one of the main signals regulating nitric oxide synthase (NOS) expression and nitric oxide (NO) biosynthesis in mammals. However, few comparative studies have been performed on the role of ACh on NOS activity in non-mammalian animals. We have therefore studied the cholinergic control of NOS in the snail Helix pomatia and compared the effects of ACh on NO synthesis in the enteric nervous system of the snail and rat.

View Article and Find Full Text PDF

In this study the authors analyzed the action of Flavon Max product on the cardiovascular system of patients with severe coronary disease. Two randomized, double-blind, placebo controlled trials were carried out using impedance-cardiography, arteriography, vascular Doppler and biochemical laboratory methods. The results demonstrate that Augmentation Index measured with arteriography and C reactive protein (CRP) levels were significantly ameliorated after 2 x 2 months Flavon Max therapy.

View Article and Find Full Text PDF

Objective: The effects of adenosine (Ado) and subtype-specific activators of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were studied on the release of arachidonic acid (AA) and its metabolites (AAM) from human peripheral mononuclear cells (monocytes).

Materials And Method: Adenosine and the selective agonists and antagonists of adenosine receptors were used. (3)H-AA and its metabolites released into the medium were determined by measurement of the total (3)H radioactivity released without separating the AAM.

View Article and Find Full Text PDF

By using NADPH-diaphorase (NADPH-d) histochemistry, nitric oxide synthase (NOS) immunohistochemistry, Western blotting, and NO pharmacology, we investigated the distribution and possible function of NOS-containing neurons in different units of the alimentary tract of the snail, Helix pomatia. Discrete populations of neurons in the buccal ganglia displayed NADPH-d reactivity. NADPH-d-reactive and NOS-immunoreactive (NOS-IR) neurons were present in the caecum, and labeled fibers were found to innervate the circular muscles of the proesophagus and caecum and to form axosomatic connections with neurons of the myenteric and submucosal plexi of the caecum.

View Article and Find Full Text PDF

The responses to adenosine were studied on isolated, methacholine-precontracted tracheal strips of guinea pigs in the course of long-term caffeine or solvent treatment. Guinea pigs were fed caffeine for 10 weeks (average serum caffeine concentration: 39.1 +/- 3.

View Article and Find Full Text PDF

The aim of the present study was to test the hypothesis that inhibition of adenosine deaminase (ADA) enhances the efficiency of signal-transduction of myocardial A1 adenosine receptors in hyperthyroidism. The inotropic response to N6-cyclopentyladenosine (CPA), a selective A1 adenosine receptor agonist resistant to ADA, was investigated in the absence or presence of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an ADA and cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2) inhibitor, or of pentostatin (2'-deoxycoformycin; DCF), an exclusive ADA inhibitor, in left atria isolated from eu- or hyperthyroid guinea pigs. Both ADA inhibitors enhanced the effect of CPA only in hyperthyroid atria.

View Article and Find Full Text PDF

The aim of the present study was to investigate the effect of hyperthyroidism on the trans-sarcolemmal adenosine (Ado) flux via equilibrative and nitrobenzylthioinosine (NBTI)-sensitive nucleoside transporters (ENT1) in guinea pig atria, by assessing the change in the Ado concentration of the interstitial fluid ([Ado]ISF) under nucleoside transport blockade with NBTI. For the assessment, we applied our novel method, which estimates the change in [Ado]ISF utilizing the altered inotropic response to N6-cyclopentyladenosine (CPA), a relative stable selective agonist of A1 Ado receptors, by providing a relative index, the equivalent concentration of CPA. Our results show an interstitial Ado accumulation upon ENT1 blockade, which was more extensive in the hyperthyroid samples (CPA concentrations equieffective with the surplus [Ado]ISF were two to three times higher in hyperthyroid atria than in euthyroid ones, with regard to the negative inotropic effect of CPA and Ado).

View Article and Find Full Text PDF

Type 2 5' deiodinase enzyme was observed in both thyroid and eye muscle tissues, highlighting its possible role as a common antigen in thyroid-associated ophthalmopathy. Sera of 105 Graves' patients and 40 controls, and immunized guinea pig sera against TCSS peptide, showing homology to the amino acid sequence from 132 to 152 of type 2 5' deiodinase, were investigated to demonstrate the binding effects to human thyroid, eye and skeletal muscle tissues. Twenty-two Graves' patients were positive for anti-TCSS peptide antibodies, of whom 18 cases had ophthalmopathy.

View Article and Find Full Text PDF

The possible involvement of the L-arginine-containing Phe-met-arg-phe (FMRF)-amide (FMRFa) in neuronal nitric oxide (NO) biosynthesis was studied in a gastropod species. We found NADPH-diaphorase-positive neurons and FMRFa-containing fibers in close proximity in the enteric nervous system. Administration of L-arginine and FMRFa induced quantitatively similar nitrite production in both intact intestinal tissues and tissue homogenates.

View Article and Find Full Text PDF