Publications by authors named "Szatkiewicz J"

Article Synopsis
  • - This study is the first large-scale examination of rare copy number variants (CNVs) in anorexia nervosa (AN), involving data from 7,414 AN cases and 5,044 controls to explore their potential genetic links to the disorder.
  • - The researchers investigated both well-known syndromic CNVs and those associated with other diseases but found no significant links between these variants and AN; however, they identified 21 potential CNV regions that may play a role in AN risk, particularly in areas related to metabolic and neurodevelopmental factors.
  • - Ultimately, the findings suggest that rare CNVs have a limited impact on the development of AN, aligning it with other psychiatric disorders like bipolar disorder, and indicate that
View Article and Find Full Text PDF
Article Synopsis
  • Thousands of genomic regions related to heritable human diseases have been identified, but understanding their biological significance remains challenging due to unclear functional importance.
  • An analysis using single-base phyloP scores from 240 mammals revealed that 3.3% of the human genome is significantly constrained, suggesting these areas are likely functionally important.
  • The study found that constrained positions correlate with variants that account for more common disease heritability than other functional annotations, indicating a need for further exploration of the human genome's regulatory landscape in relation to diseases.
View Article and Find Full Text PDF

Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.

View Article and Find Full Text PDF

Genetic dissection of neuropsychiatric disorders can potentially reveal novel therapeutic targets. While genome-wide association studies (GWAS) have tremendously advanced our understanding, we approach a sample size bottleneck (i.e.

View Article and Find Full Text PDF

Background: It remains unknown why ~30% of patients with psychotic disorders fail to respond to treatment. Previous genomic investigations of treatment-resistant psychosis have been inconclusive, but some evidence suggests a possible link between rare disease-associated copy number variants (CNVs) and worse clinical outcomes in schizophrenia. Here, we identified schizophrenia-associated CNVs in patients with treatment-resistant psychotic symptoms and then compared the prevalence of these CNVs to previously published schizophrenia cases not selected for treatment resistance.

View Article and Find Full Text PDF

Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered 287 genomic regions associated with schizophrenia, emphasizing genes specifically active in excitatory and inhibitory neurons, and identified 120 key genes potentially responsible for these associations.
  • * The findings highlight important biological processes related to neuronal function, suggesting overlaps between common and rare genetic variants in both schizophrenia and neurodevelopmental disorders, ultimately aiding future research on these conditions.
View Article and Find Full Text PDF

Schizophrenia (SCZ) is highly heterogenous and no subtypes characterizing treatment response or longitudinal course well. Cognitive impairment is a core clinical feature of SCZ and a determinant of poorer outcome. Genetic overlap between SCZ and cognitive traits is complex, with limited studies of comprehensive epidemiological and genomic evidence.

View Article and Find Full Text PDF

Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder with complex patterns of genetic inheritance. Recent genetic findings in TS have highlighted both numerous common variants with small effects and a few rare variants with moderate or large effects. Here we searched for genetic causes of TS in a large, densely-affected British pedigree using a systematic genomic approach.

View Article and Find Full Text PDF

A better understanding of genetic influences on early white matter development could significantly advance our understanding of neurological and psychiatric conditions characterized by altered integrity of axonal pathways. We conducted a genome-wide association study (GWAS) of diffusion tensor imaging (DTI) phenotypes in 471 neonates. We used a hierarchical functional principal regression model (HFPRM) to perform joint analysis of 44 fiber bundles.

View Article and Find Full Text PDF

The 3q29 deletion is a rare copy number variant associated with neurodevelopmental and psychiatric disorders, including a >40-fold increased risk for schizophrenia. Current understanding of the clinical phenotype is derived primarily from published cases of patients in childhood or early adolescence. Symptoms include mild to moderate learning disability, developmental delay, facial dysmorphism, microcephaly, ocular disorders, and gastrointestinal abnormalities.

View Article and Find Full Text PDF

Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have learned a lot about the genetics of schizophrenia, but many earlier studies only looked at a few types of genetic changes.
  • By using whole genome sequencing (WGS), researchers can find more types of genetic variants that might be linked to schizophrenia.
  • Their research found that some rare genetic changes that affect how genes are organized in the genome can increase the risk of developing schizophrenia, and they plan to study how these changes affect gene behavior in more detail.
View Article and Find Full Text PDF

The 15q11.2 BP1-BP2 (Burnside-Butler) deletion is a rare copy number variant impacting four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5), and carries increased risks for developmental delay, intellectual disability, and neuropsychiatric disorders (attention-deficit/hyperactivity disorder, autism, and psychosis). In this case report (supported by extensive developmental information and medication history), we present the complex clinical portrait of a 44-year-old woman with 15q11.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers analyzed data from genome-wide association studies (GWAS) to explore genetic correlations across four eating disorder types and eight substance-use-related traits, involving large sample sizes ranging from ~2400 to ~537,000 participants.
  • Findings indicated positive genetic associations between anorexia nervosa and alcohol use disorder, as well as cannabis initiation, while some negative correlations were found between anorexia without binge eating and smoking behaviors, suggesting a complex relationship between these disorders influenced by genetic and possibly depressive factors.
View Article and Find Full Text PDF

Background: Genetic studies of schizophrenia have implicated numerous risk loci including several copy number variants (CNVs) of large effect and hundreds of loci of small effect. In only a few cases has a specific gene been clearly identified. Rare CNVs affecting a single gene offer a potential avenue to discovering schizophrenia risk genes.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness, affecting 0.9-4% of women and 0.3% of men, with twin-based heritability estimates of 50-60%.

View Article and Find Full Text PDF

We searched for genetic causes of major psychiatric disorders (bipolar disorder, schizoaffective disorder, and schizophrenia) in a large, densely affected pedigree from Northern Sweden that originated with three pairs of founders born around 1650. We applied a systematic genomic approach to the pedigree via karyotyping (N = 9), genome-wide SNP arrays (N = 418), whole-exome sequencing (N = 26), and whole-genome sequencing (N = 10). Comprehensive analysis did not identify plausible variants of strong effect.

View Article and Find Full Text PDF
Article Synopsis
  • - Fragile X syndrome (FXS) is a rare but significant cause of intellectual disability, primarily stemming from a new mutation that typically isn't detectable through genome-wide association studies (GWA).
  • - A GWA study involving 89 male FXS cases and 266 male controls found notable genetic signals near the FMR1 gene, indicating a strong association with the condition.
  • - The research highlighted the variability of risk and protective genetic factors, showing that certain variants can influence the length of CGG repeats in the FMR1 gene, demonstrating the complexity of even seemingly straightforward genetic disorders.
View Article and Find Full Text PDF
Article Synopsis
  • A study investigated the genetic overlap between 25 brain disorders using data from over 1.2 million individuals, finding that psychiatric disorders share more genetic risk compared to neurological disorders, which seem more distinct.
  • The research identified significant relationships between these disorders and various cognitive measures, suggesting shared underlying traits.
  • Simulations were conducted to understand how factors like sample size and diagnosis accuracy influence genetic correlations, emphasizing the role of common genetic variations in the risk of brain disorders.
View Article and Find Full Text PDF

Background: The application of high-throughput sequencing in a broad range of quantitative genomic assays (e.g., DNA-seq, ChIP-seq) has created a high demand for the analysis of large-scale read-count data.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) of adolescents and adults are transforming our understanding of how genetic variants impact brain structure and psychiatric risk, but cannot address the reality that psychiatric disorders are unfolding developmental processes with origins in fetal life. To investigate how genetic variation impacts prenatal brain development, we conducted a GWAS of global brain tissue volumes in 561 infants. An intronic single-nucleotide polymorphism (SNP) in IGFBP7 (rs114518130) achieved genome-wide significance for gray matter volume (P=4.

View Article and Find Full Text PDF