Publications by authors named "Szalewicz K"

A dispersion-corrected density functional theory (DFT+D) method has been developed. It includes a nonhybrid dispersionless generalized gradient approximation (GGA) functional paired with a literature-parametrized dispersion function. The functional's 9 adjustable parameters were optimized using a training set of 589 benchmark interaction energies.

View Article and Find Full Text PDF
Article Synopsis
  • - The seventh blind test for molecular crystal structure prediction (CSP) involved two stages with seven diverse crystal targets, including cocrystals and a salt, analyzed using a CSP protocol that started with finding optimal molecule conformations.
  • - An ab initio two-body rigid-monomer six-dimensional force field (aiFF) was developed to assist with packing and energy minimization in CSPs, incorporating flexible-monomer techniques for specific targets.
  • - The results highlighted a success rate of 15% in structure generation and 33% in structure rating during the submission phase, improving significantly post-submission to 54% and 89%, respectively; the study suggests a conformer-based CSP approach is effective for crystals with flexible
View Article and Find Full Text PDF
Article Synopsis
  • Participants from 22 research groups utilized various methods, including periodic DFT-D methods, machine learning models, and empirical force fields to assess crystal structures generated from standardized sets.
  • The findings indicate that DFT-D methods generally aligned well with experimental results, while one machine learning approach showed significant promise; however, the need for more efficient research methods was emphasized due to resource consumption.
View Article and Find Full Text PDF

A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern.

View Article and Find Full Text PDF

Measurements of rovibrational spectra of clusters provide physical insight only if spectral lines can be assigned to pairs of quantum states, and further insight is obtained if one can deduce the quantitative energy-level pattern. Both steps can be so difficult that some measured spectra remain unassigned, one example is H-CO. To extend the scope of spectroscopic insights, we propose to use theoretical information in interpretation of spectra.

View Article and Find Full Text PDF

Symmetry-adapted perturbation theory (SAPT) is a method for computational studies of noncovalent interactions between molecules. This method will be discussed here from the perspective of establishing the paradigm for understanding mechanisms of intermolecular interactions. SAPT interaction energies are obtained as sums of several contributions.

View Article and Find Full Text PDF

An inexpensive and reliable method for molecular crystal structure predictions (CSPs) has been developed. The new CSP protocol starts from a two-dimensional graph of crystal's monomer(s) and utilizes no experimental information. Using results of quantum mechanical calculations for molecular dimers, an accurate two-body, rigid-monomer ab initio-based force field (aiFF) for the crystal is developed.

View Article and Find Full Text PDF

Hydrate formation is often unavoidable during crystallization, leading to performance degradation of pharmaceuticals and energetics. In some cases, water molecules trapped within crystal lattices can be substituted for hydrogen peroxide, improving the solubility of drugs and detonation performance of explosives. The present work compares hydrates and hydrogen peroxide solvates in two ways: (1) analyzing structural motifs present in crystal structures accessed from the Cambridge Structural Database and (2) developing potential energy surfaces for water and hydrogen peroxide interacting with functional groups of interest at geometries relevant to the solid state.

View Article and Find Full Text PDF

In the 1980s, Nelson, Fraser, and Klemperer (NFK) published an experimentally derived structure of the ammonia dimer dramatically different from the structure determined computationally, which led these authors to the question "Does ammonia hydrogen bond?". This question has not yet been answered satisfactorily. To answer it, we have developed an ab initio potential energy surface (PES) for this dimer at the limits of the current computational capabilities and performed essentially exact six-dimensional calculations of the vibration-rotation-tunneling (VRT) spectra of NH-NH and ND-ND, obtaining an unprecedented agreement with experimental spectra.

View Article and Find Full Text PDF

A dispersion function in the form of a damped atom-atom asymptotic expansion fitted to dispersion energies from symmetry-adapted perturbation theory was improved and extended to systems containing heavier halogen atoms. To illustrate its performance, the revised function was implemented in the multipole first-order electrostatic and second-order dispersion (MED) scoring model. The extension has allowed applications to a much larger set of biocomplexes than it was possible with the original .

View Article and Find Full Text PDF

Symmetry-adapted perturbation theory (SAPT) is a method for calculations of intermolecular (noncovalent) interaction energies. The set of SAPT codes that is described here, the current version named SAPT2020, includes virtually all variants of SAPT developed so far, among them two-body SAPT based on perturbative, coupled cluster, and density functional theory descriptions of monomers, three-body SAPT, and two-body SAPT for some classes of open-shell monomers. The properties of systems governed by noncovalent interactions can be predicted only if potential energy surfaces (force fields) are available.

View Article and Find Full Text PDF

We present a method for the generation of points in space needed to create training data for fitting of nonlinear parametric models. This method uses statistical information extracted from an initial fit on a sparse grid to select optimal grid points in an iterative manner and is, therefore, called the iterative variance minimizing grid approach. We demonstrate the method in the case of six-dimensional intermolecular potential energy surfaces (PESs) fitted to ab initio computed interaction energies.

View Article and Find Full Text PDF

A method is developed for automatic generation of nonreactive intermolecular two-body potential energy surfaces (PESs) including intramonomer degrees of freedom. This method, called flex-autoPES, is an extension of the autoPES method developed earlier, which assumes rigid monomers. In both cases, the whole PES development proceeds without any human intervention.

View Article and Find Full Text PDF

The Hartree-Fock plus dispersion plus first-order correlation (HFDc) method consists in augmenting the HF interaction energy by the correlation part of the first-order interaction energy and the second-order dispersion and exchange-dispersion energies. All of the augmentation terms are computed using the symmetry-adapted perturbation theory based on density functional theory description of monomers [SAPT(DFT)]; thus, HFDc is a fully ab initio method. A partly empirical version of this method, HFDc, uses a damped asymptotic expansion for the dispersion plus exchange-dispersion term fitted to SAPT(DFT) ab initio values.

View Article and Find Full Text PDF

A simple nonlocal functional for calculation of dispersion energies is proposed. Compared to a similar formula used earlier, we introduced a regularization to remove its singularities and used a dynamic polarizability density similar to those in the so-called van der Waals density functionals. The performance of the new functional is tested on dispersion energies for a set of representative dimers, and it is found that it is significantly more accurate than published nonlocal functionals.

View Article and Find Full Text PDF

The paper collects the answers of the authors to the following questions: Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes? Does the adoption of a given partition scheme imply a set of more precise definitions of the underlying chemical concepts? How can one use the results of a partition scheme to improve the clarity of definitions of concepts? Are partition schemes subject to scientific Darwinism? If so, what is the influence of a community's sociological pressure in the "natural selection" process? To what extent does/can/should investigated systems influence the choice of a particular partition scheme? Do we need more focused chemical validation of Energy Decomposition Analysis (EDA) methodology and descriptors/terms in general? Is there any interest in developing common benchmarks and test sets for cross-validation of methods? Is it possible to contemplate a unified partition scheme (let us call it the "standard model" of partitioning), that is proper for all applications in chemistry, in the foreseeable future or even in principle? In the end, science is about experiments and the real world. Can one, therefore, use any experiment or experimental data be used to favor one partition scheme over another? © 2019 Wiley Periodicals, Inc.

View Article and Find Full Text PDF

Motivated by the energetic and environmental relevance of methane clathrates, highly accurate ab initio potential energy surfaces (PESs) have been developed for the three possible dimers of the methane and water molecules: (H2O)2, CH4·H2O, and (CH4)2. While only a single monomer geometry was used for each monomer in the ab initio calculations, the PES parameterization makes it possible to produce distinct surfaces for all isotopologues within the rigid-monomer approximation. The PESs were fitted to computations at the frozen-core coupled-cluster level with single, double, and non-iterative triple excitations, employing basis sets of augmented triple- and quadruple-zeta quality plus bond functions, followed by extrapolations to the complete basis set limit.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations of methane-water mixtures were performed using ab initio force fields for the CH-HO, HO-HO, and CH-CH interactions. Both methane and water molecules were polarizable. From these calculations, the potential of mean force (PMF) between two methane molecules was extracted.

View Article and Find Full Text PDF

Path-Integral Monte Carlo methods were applied to calculate the second, B(T), and the third, C(T), virial coefficients for water. A fully quantum approach and state-of-the-art flexible-monomer pair and three-body potentials were used. Flexible-monomer potentials allow calculations for any isotopologue; we performed calculations for both H2O and D2O.

View Article and Find Full Text PDF

The methods that add dispersion energies to interaction energies computed using density-functional theory (DFT), known as DFT+D methods, taper off the dispersion energies at distances near van der Waals minima and smaller based on an assumption that DFT starts to reproduce the dispersion energies there. We show that this assumption is not correct as the alleged contribution behaves unphysically and originates to a large extent from nonexchange-correlation terms. Thus, dispersion functions correct DFT in this region for deficiencies unrelated to dispersion interactions.

View Article and Find Full Text PDF

The pair potential for helium is computed with accuracy improved by an order of magnitude relative to the best previous determination. For the well region, its uncertainties are now below 1 millikelvin. The main improvement is due to the use of explicitly correlated wave functions at the nonrelativistic Born-Oppenheimer (BO) level of theory.

View Article and Find Full Text PDF