Publications by authors named "Szakal A"

The aim of the study was to supplement the data on the AlCrFe alloy with binary phase structure and the AlCrFe alloy with multiphase structure prepared with two different cooling rates from the liquid state. The presence of the structurally complex AlCrFe phase was confirmed by neutron diffraction, scanning electron microscopy with the analysis of chemical composition and transmission electron microscopy. Additionally, the AlCr phase with γ-brass structure was identified for AlCrFe alloy in both cooling rates from the liquid state.

View Article and Find Full Text PDF

A considerable amount of rapid-paced research is underway to combat the SARS-CoV-2 pandemic. In this work, we assess the 3D structure of the 5' untranslated region of its RNA, in the hopes that stable secondary structures can be targeted, interrupted, or otherwise measured. To this end, we have combined molecular dynamics simulations with previous Nuclear Magnetic Resonance measurements for stem loop 2 of SARS-CoV-1 to refine 3D structure predictions of that stem loop.

View Article and Find Full Text PDF

Induction of autoantibodies (autoAbs) targeting disease drivers / mediators is emerging as a potential immunotherapeutic strategy. Auto-immune complex (IC)-retaining follicular dendritic cells (FDCs) critically regulate pathogenic autoAb production in autoreactive germinal centers (GCs); however, their ability to induce potentially therapeutic autoAbs has not been explored. We hypothesized that deliberate display of clinically targeted antigens (Ags) in the form of ICs on FDC membranes induces target-specific autoreactive GCs and autoAbs that may be exploited therapeutically.

View Article and Find Full Text PDF

Infectious salmon anemia virus (ISAV) has emerged as a virus of great concern to the aquaculture industry since it can lead to highly contagious and lethal infections in farm-raised salmon populations. While little is known about the transcription/replication cycle of ISAV, initial evidence suggests that it follows molecular mechanisms similar to those found in other orthomyxoviruses, which include the highly pathogenic influenza A (inf A) virus. During the life cycle of orthomyxoviruses, a panhandle structure is formed by the pairing of the conserved 5' and 3' ends of each genomic RNA.

View Article and Find Full Text PDF

Neutron scattering device dedicated to neutron holography experiments is described. The device is operating at a constant wavelength prepared by a double focusing monochromator. It is equipped by highly efficient shielding, proper collimator, Eulerian cradle, monitor detector, gamma-ray, and neutron detectors as well.

View Article and Find Full Text PDF

A need for antigen-processing and presentation to B cells is not widely appreciated. However, cross-linking of multiple B cell receptors (BCRs) by T-independent antigens delivers a potent signal that induces antibody responses. Such BCR cross-linking also occurs in germinal centers where follicular dendritic cells (FDCs) present multimerized antigens as periodically arranged antigen-antibody complexes (ICs).

View Article and Find Full Text PDF

Reports that follicular dendritic cells (FDCs) produce IL-6 prompted the hypotheses that immune complexes (ICs) induce FDCs to produce IL-6 and that FDC-IL-6 promotes germinal center (GC) reactions, somatic hypermutation (SHM) and IgG production. FDCs were activated in vitro by addition of ICs and FDC-IL-6 production was determined. Wild-type (WT) and IL-6 knockout (KO) mice, as well as chimeras with WT and IL-6 KO cells, were immunized with (4-hydroxy-3-nitrophenyl)-acetyl (NP)-chicken gamma globulin (CGG) and used to study anti-(4-hydroxy-3-iodo-5-nitrophenyl) acetyl (NIP) responses, GC formation and SHM in the VH186.

View Article and Find Full Text PDF

Follicular dendritic cells (FDCs) periodically arrange membrane-bound immune complexes (ICs) of T-dependent Ags 200-500A apart, and in addition to Ag, they provide B cells with costimulatory signals. This prompted the hypothesis that Ag in FDC-ICs can simultaneously cross-link multiple BCRs and induce T cell-independent (TI) B cell activation. TI responses are characterized by rapid IgM production.

View Article and Find Full Text PDF

The highly ordered structure in peripheral lymphoid tissues is maintained by continuous interactions between their hemopoietic and stromal components. The main reticular cell type, fibroblastic reticular cells (FRCs) emerged as a considerably heterogeneous group of the stroma. These cells have diverse roles beyond architectural scaffolding.

View Article and Find Full Text PDF

Follicular dendritic cells (FDCs) are immune accessory cells found in the follicles of secondary lymphoid organs where they promote B cell maturation in germinal centers (GCs) that develop following antigen exposure. Recently, we published a method for isolating functional murine FDCs in high purity. We reasoned that disruption of FDC reticula in vivo would alter FDC morphology.

View Article and Find Full Text PDF

We reasoned that immune complex (IC)-bearing follicular dendritic cells (FDCs) promote somatic hypermutation (SHM). This hypothesis was tested in murine germinal center reactions induced in vitro by coculturing 6-day (4-hydroxy-3-nitrophenyl) acetyl-primed but unmutated lambda+ B cells, chicken gamma-globulin (CGG) memory T cells, FDCs, and ICs (anti-CGG plus NP-CGG). Mutations in primed lambda+ B cells were obtained only when both FDCs and immunogen were present.

View Article and Find Full Text PDF

Microbial molecular patterns engage TLRs and activate dendritic cells and other accessory cells. Follicular dendritic cells (FDCs) exist in resting and activated states, but are activated in germinal centers, where they provide accessory function. We reasoned that FDCs might express TLRs and that engagement might activate FDCs by up-regulating molecules important for accessory activity.

View Article and Find Full Text PDF

Follicular dendritic cells (FDCs) reside in germinal centers in which their dendrites interdigitate and form non-mobile networks. FDC purification requires the use of collagenase and selection columns and leaves FDCs without detectable dendrites when examined by light microscopy. We have reasoned that isolated FDCs might reattach to a collagen matrix, extend their processes, and form immobile networks in vitro.

View Article and Find Full Text PDF

Follicular dendritic cell (FDC)-FcgammaRIIB levels are up-regulated 1-3 days after challenge of actively immunized mice with Ag. This kinetics suggested that memory cells are not driving this response, prompting the hypothesis that immune complex (IC)-FDC interactions lead to FDC activation. To test this, mice passively immunized with anti-OVA Ab were OVA challenged to produce IC.

View Article and Find Full Text PDF

Biochemical, genetic, and immunological studies of follicular dendritic cells (FDCs) have been hampered by difficulty in obtaining adequate numbers of purified cells in a functional state. To address this obstacle, we enriched FDCs by irradiating mice to destroy most lymphocytes, excised the lymph nodes, and gently digested the nodes with an enzyme cocktail to form single cell suspensions. The FDCs in suspension were selected using the specific mAb FDC-M1 with magnetic cell separation technology.

View Article and Find Full Text PDF

Differences in murine follicular dendritic cells (FDC)-CD23 expression under Th1 vs Th2 conditions prompted the hypothesis that T cells help regulate the phenotype of FDCs. FDCs express CD40, suggesting that T cell-CD40L and lymphokines may be involved in regulating FDC-CD23. To test this, highly enriched FDCs were incubated with CD40L trimer or anti-CD40 to mimic T cell signaling in the presence of IFN-gamma or IL-4.

View Article and Find Full Text PDF

It is believed that Ag in immune complexes (ICs) on follicular dendritic cells (FDCs) selects high affinity B cells and promotes affinity maturation. However, selection has been documented in the absence of readily detectable ICs on FDCs, suggesting that FDC-ICs may not be important. These results prompted experiments to test the hypothesis that IC-bearing murine FDCs can promote high affinity IgG responses by selecting B cells after stimulating naive IgM(+) cells to mature and class switch.

View Article and Find Full Text PDF

Exposure to bacterial superantigens such as staphylococcal enterotoxin B (SEB) leads to the induction of toxic shock syndrome which results in multiorgan failure, including liver damage. In the present study, we investigated the role of CD44 in SEB-induced liver injury. Injection of SEB into d-galactosamine-sensitized CD44 wild-type (WT) mice led to a significant increase in CD44 expression on liver T cells, NK cells, and NKT cells.

View Article and Find Full Text PDF

The development of peripheral lymphoid tissues requires a series of cognate interactions between hemopoietic and stromal cell populations, including reticular fibroblasts, which form the mesenchymal scaffolding of distinct tissue compartments. Here we describe the formation of different fibroblastic domains in the mouse spleen white pulp by using two new rat monoclonal antibodies (MAbs). In the white pulp, MAb IBL-10 labels both T- and B-cell zone reticular elements at various intensities.

View Article and Find Full Text PDF

Senescence leads to the appearance of atrophic follicular dendritic cells (FDCs) that trap and retain little immune complexes (IC), generate few memory B cells, and induce a reduced number of germinal centers (GC). Deficiencies in antibody responses to T cell dependent exogenous antigens such as pneumonia and influenza vaccines may reflect intrinsic FDC defects or altered FDC-B cell interactions. We recently studied antigen handling capacity and co-stimulatory activity of old FDCs and determined age-related changes in the expression or function of FcgammaRII or CR1 and 2 on FDCs.

View Article and Find Full Text PDF

Immune complexes (IC) initiate immunoreceptor tyrosine-based inhibition motif (ITIM) signaling and inhibit B cell activation by coligating B cell receptor for antigen (BCR) and FcgammaRII. Nevertheless, IC on follicular dendritic cells (FDC) stimulate rapid germinal center (GC) B cell proliferation suggesting that interactions between IC and FDC render IC capable of B cell activation. To understand this, we studied the kinetics of FDC FcgammaRII and complement receptors 1 and 2 (CR1&2) expressions during the GC reaction and determined whether FDC FcgammaRII could bind Fc in IC and block ITIM signaling.

View Article and Find Full Text PDF

Aging is associated with reduced trapping of Ag in the form of in immune complexes (ICs) by follicular dendritic cells (FDCs). We postulated that this defect was due to altered regulation of IC trapping receptors. The level of FDC-M1, complement receptors 1 and 2, FcgammaRII, and FDC-M2 on FDCs was immunohistochemically quantitated in draining lymph nodes of actively immunized mice for 10 days after Ag challenge.

View Article and Find Full Text PDF

In the current study, we investigated the nature and role of CD44 variant isoforms involved in endothelial cell (EC) injury and tumor cell cytotoxicity mediated by IL-2-activated killer (LAK) cells. Treatment of CD44 wild-type lymphocytes with IL-2 led to increased gene expression of CD44 v6 and v7 variant isoforms and to significant induction of vascular leak syndrome (VLS). CD44v6-v7 knockout (KO) and CD44v7 KO mice showed markedly reduced levels of IL-2-induced VLS.

View Article and Find Full Text PDF

Morphological and kinetic studies of immune complex (IC) trapping by follicular dendritic cells (FDC) show marked age-related deficits. We postulated that a reduction in trapped IC, which generate CD21 ligands (L) on FDC, would lead to inadequate FDC-Ag-B cell interactions resulting in depressed Ab responses. To determine whether the age-related defect was the result of the aging of FDC or changes in the in vivo microenvironment of FDC (i.

View Article and Find Full Text PDF

The architecture of lymphoid follicles is determined by a series of interactions between lymphoid and follicular stromal cells. A cardinal population in the non-lymphoid compartment is the follicular dendritic cell (FDC), whose communication with resting and activated B cells involves various adhesive interactions. The FDC phenotype variably includes the display of vascular cell adhesion molecule (VCAM-1).

View Article and Find Full Text PDF