Publications by authors named "Szabolcs Makai"

Chromatin-chromatin interactions and three-dimensional (3D) spatial structures are involved in transcriptional regulation and have a decisive role in DNA replication and repair. To understand how individual genes and their regulatory elements function within the larger genomic context, and how the genome reacts to environmental stimuli, the linear sequence information needs to be interpreted in three-dimensional space, which is still a challenging task. Here, we propose a novel, heuristic approach to represent Hi-C datasets by a whole-genomic pseudo-structure in 3D space.

View Article and Find Full Text PDF

Electrophilic aminating reagents have seen a renaissance in recent years as effective nitrogen sources for the synthesis of unprotected amino functionalities. Based on their reactivity, several noble and non-noble transition metal catalysed amination reactions have been developed. These include the aziridination and difunctionalisation of alkenes, the amination of arenes as well as the synthesis of aminated sulfur compounds.

View Article and Find Full Text PDF

Unprotected, primary 2-azidoamines are versatile precursors to vicinal diamines, which are among the most common motifs in biologically active compounds. Herein, we report their operationally simple synthesis through an iron-catalyzed difunctionalization of alkenes. A wide array of alkene substrates are tolerated, including complex drug-like molecules and a tripeptide.

View Article and Find Full Text PDF

An iron catalyzed reaction for the selective transformation of thiols (-SH) to sulfinamides (-SONH ) by a direct transfer of -O and free -NH groups has been developed. The reaction operates under mild conditions using a bench stable hydroxylamine derived reagent, exhibits broad functional group tolerance, is scalable and proceeds without the use of any precious metal catalyst or additional oxidant. This novel, practical reaction leads to the formation of two distinct new bonds (S=O and S-N) in a single step to chemoselectively form valuable, unprotected sulfinamide products.

View Article and Find Full Text PDF

Secondary and tertiary alkylamines are privileged substance classes that are often found in pharmaceuticals and other biologically active small molecules. Herein, we report their direct synthesis from alkenes through an aminative difunctionalization reaction enabled by iron catalysis. A family of ten novel hydroxylamine-derived aminating reagents were designed for the installation of several medicinally relevant amine groups, such as methylamine, morpholine and piperazine, through the aminochlorination of alkenes.

View Article and Find Full Text PDF

Among all metathesis reactions known to date in organic chemistry, the metathesis of multiple bonds such as alkenes and alkynes has evolved into one of the most powerful methods to construct molecular complexity. In contrast, metathesis reactions involving single bonds are scarce and far less developed, particularly in the context of synthetically valuable ring-closing reactions. Herein, we report an iron-catalyzed ring-closing metathesis of aliphatic ethers for the synthesis of substituted tetrahydropyrans and tetrahydrofurans, as well as morpholines and polycyclic ethers.

View Article and Find Full Text PDF

We report herein the asymmetric coupling of flow-generated unstabilized diazo compounds and propargylated amine derivatives, using a new pyridinebis(imidazoline) ligand, a copper catalyst and base. The reaction proceeds rapidly, generating chiral allenes in 10-20 minutes with high enantioselectivity (89-98 % de/ee), moderate yields and a wide functional group tolerance.

View Article and Find Full Text PDF

Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance.

View Article and Find Full Text PDF

Analysis of gene expression data generated by high-throughput microarray transcript profiling experiments coupled with cis-regulatory elements enrichment study and cluster analysis can be used to define modular gene programs and regulatory networks. Unfortunately, the high molecular weight glutenin subunits of wheat (Triticum aestivum) are more similar than microarray data alone would allow to distinguish between the three homoeologous gene pairs. However, combining complementary DNA (cDNA) expression libraries with microarray data, a co-expressional network was built that highlighted the hidden differences between these highly similar genes.

View Article and Find Full Text PDF

The plastids and mitochondria of the eukaryotic cell are of endosymbiotic origin. These events occurred ~2 billion years ago and produced significant changes in the genomes of the host and the endosymbiont. Previous studies demonstrated that the invasion of land affected plastids and mitochondria differently and that the paths of mitochondrial integration differed between animals and plants.

View Article and Find Full Text PDF

Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways.

View Article and Find Full Text PDF