Publications by authors named "Szabolcs David"

Introduction: Manual segmentation of medical images is labor intensive and especially challenging for images with poor contrast or resolution. The presence of disease exacerbates this further, increasing the need for an automated solution. To this extent, SynthSeg is a robust deep learning model designed for automatic brain segmentation across various contrasts and resolutions.

View Article and Find Full Text PDF

Background: Post-operative radiosurgery (SRS) of brain metastases patients is typically planned on a post-recovery MRI, 2-4 weeks after resection. However, the intracranial metastasis may (re-)grow in this period. Planning SRS directly on the post-operative MRI enables shortening this time interval, anticipating the start of adjuvant systemic therapy, and so decreasing the chance of extracranial progression.

View Article and Find Full Text PDF

Previous research using functional MRI identified brain regions associated with sensory processing sensitivity (SPS), a proposed normal phenotype trait. To further validate SPS, to characterize it anatomically, and to test the usefulness in psychology of methodologies that assess axonal properties, the present study correlated SPS proxy questionnaire scores (adjusted for neuroticism) with diffusion tensor imaging (DTI) measures. Participants (n = 408) from the Human Connectome Project were studied.

View Article and Find Full Text PDF

Background And Purpose: Changes of healthy appearing brain tissue after radiotherapy (RT) have been previously observed. Patients undergoing RT may have a higher risk of cognitive decline, leading to a reduced quality of life. The experienced tissue atrophy is similar to the effects of normal aging in healthy individuals.

View Article and Find Full Text PDF

Background: Neural stem cells in the subventricular zone (SVZ) and subgranular zone (SGZ) are hypothesized to support growth of glioma. Therefore, irradiation of the SVZ and SGZ might reduce tumor growth and might improve overall survival (OS). However, it may also inhibit the repair capacity of brain tissue.

View Article and Find Full Text PDF

White matter pathology likely contributes to the pathogenesis of bipolar disorder (BD). Most studies of white matter in BD have used diffusion tensor imaging (DTI), but the advent of more advanced multi-shell diffusion MRI imaging offers the possibility to investigate other aspects of white matter microstructure. Diffusion kurtosis imaging (DKI) extends the DTI model and provides additional measures related to diffusion restriction.

View Article and Find Full Text PDF

Background And Purpose: The relation between radiotherapy (RT) dose to the brain and morphological changes in healthy tissue has seen recent increased interest. There already is evidence for changes in the cerebral cortex and white matter, as well as selected subcortical grey matter (GM) structures. We studied this relation in all deep GM structures, to help understand the aetiology of post-RT neurocognitive symptoms.

View Article and Find Full Text PDF

Background: With overall survival of brain tumors improving, radiation induced brain injury is becoming an increasing issue. One of the effects of radiation therapy (RT) is thinning of the cerebral cortex, which could be one of the factors contributing to cognitive impairments after treatment. In healthy brain, cortex thickness varies between 1 and 4.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation (rTMS) is an established treatment for major depressive disorder (MDD), but its clinical efficacy remains rather modest. One reason for this could be that the propagation of rTMS effects via structural connections from the stimulated area to deeper brain structures (such as the cingulate cortices) is suboptimal.

Methods: We investigated whether structural connectivity — derived from diffusion MRI data — could serve as a biomarker to predict treatment response.

View Article and Find Full Text PDF

Aggression after military deployment is a common occurrence in veterans. Neurobiological research has shown that aggression is associated with a dysfunction in a network connecting brain regions implicated in threat processing and emotion regulation. However, aggression may also be related to deficits in networks underlying communication and social cognition.

View Article and Find Full Text PDF

Nonlinearities of gradient magnetic fields in diffusion MRI (dMRI) can introduce systematic errors in estimates of diffusion measures. While there are correction methods that can compensate for these errors, as presented in the Human Connectome Project, such nonlinear effects are often assumed to be negligible for typical applications, and as a result, gradient nonlinearities are mostly left uncorrected. In this work, we perform a systematic analysis to investigate the effect of gradient nonlinearities on dMRI studies, from voxel-wise estimates to group study outcomes.

View Article and Find Full Text PDF

Cognitive decline has a clear impact on quality of life in patients who have received cranial radiation treatment. The pathophysiological process is most likely multifactorial, with a possible role for decreased cortical thickness and volume. As radiotherapy treatment systems are becoming more sophisticated, precise sparing of vulnerable regions and tissue is possible.

View Article and Find Full Text PDF

Fiber tractography (FT) using diffusion magnetic resonance imaging (dMRI) is widely used for investigating microstructural properties of white matter (WM) fiber-bundles and for mapping structural connections of the human brain. While studying the architectural configuration of the brain's circuitry with FT is not without controversy, recent progress in acquisition, processing, modeling, analysis, and visualization of dMRI data pushes forward the reliability in reconstructing WM pathways. Despite being aware of the well-known pitfalls in analyzing dMRI data and several other limitations of FT discussed in recent literature, we present the superoanterior fasciculus (SAF), a novel bilateral fiber tract in the frontal region of the human brain that-to the best of our knowledge-has not been documented.

View Article and Find Full Text PDF

Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups.

View Article and Find Full Text PDF

Central sensitization is a key mechanism in the pathology of several neuropathic pain disorders. We aimed to investigate the underlying brain connectivity changes in a rat model of chronic pain. Non-noxious whisker stimulation was used to evoke blood-oxygen-level-dependent (BOLD) responses in a block-design functional Magnetic Resonance Imaging (fMRI) experiment on 9.

View Article and Find Full Text PDF

There is a huge unmet need to understand and treat pathological cognitive impairment. The development of disease modifying cognitive enhancers is hindered by the lack of correct pathomechanism and suitable animal models. Most animal models to study cognition and pathology do not fulfil either the predictive validity, face validity or construct validity criteria, and also outcome measures greatly differ from those of human trials.

View Article and Find Full Text PDF

The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A) are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance.

View Article and Find Full Text PDF

Concordant results of functional magnetic resonance imaging (fMRI) and behavioral tests prove that some non-blood-brain barrier-penetrating drugs produce robust central nervous system (CNS) effects. The anticholinergic scopolamine interferes with learning when tested in rats, which coincides with a negative blood-oxygen-level-dependent (BOLD) change in the prefrontal cortex (PFC) as demonstrated by fMRI. The peripherally acting butylscopolamine also evokes a learning deficit in a water-labyrinth test and provokes a negative BOLD signal in the PFC.

View Article and Find Full Text PDF

Diffusion weighted magnetic resonance imaging is increasingly being used for neonatal and young pediatric subjects. Our purpose was to investigate a) whether cardiac triggering was needed to reduce variability of diffusion (tensor) imaging data, b) how pulsation artifacts affect the fitted diffusion tensor when triggering is not used and c) the feasibility of triggered data acquisition in neonates and young children. Data were collected from 11 infants and 7 adults.

View Article and Find Full Text PDF