Publications by authors named "Syuzanna R Harutyunyan"

Catalytic electrochemical asymmetric catalysis is emerging as a promising strategy for the synthesis of chiral compounds. Herein, we report an asymmetric electrochemical nickel-catalysed reductive conjugate addition of alkenyl bromides/aryl iodides to α,β-unsaturated ketones in an undivided cell, leading to addition products with high yields and excellent enantioselectivities (up to 96% yield and 96% ee).

View Article and Find Full Text PDF

Herein, we present the first catalytic asymmetric nucleophilic addition of diarylphosphines to 2H-azirines, facilitated by a chiral Mn(I) complex. This method not only provides access to novel class of derivatives of the aziridine core - a structural motif recognized for its antitumor and antibacterial properties - but also introduces a phosphine moiety alongside the generation of an NH moiety within a strained three-membered ring. The discovery of this new Mn(I) complex that both enables the reaction and induces stereoselectivity is pivotal, as it underscores the significant potential of this earth-abundant metal in advancing asymmetric catalysis.

View Article and Find Full Text PDF

Catalytic dearomatization of pyridinium salts is a powerful technique for constructing chiral -heterocycles, which are crucial in alkaloid natural products and drugs. Despite its potential, progress in metal-catalyzed asymmetric dearomatization of pyridinium derivatives has been limited. Here, we present the enantioselective 1,4-dearomatization of pyridinium salts using Grignard reagents and chiral copper catalysis.

View Article and Find Full Text PDF

The nucleophilic ring opening of epoxides by carboxylic acids is an indispensable transformation for materials science and coating technologies. Due to this industrial significance, improvements in operational energy consumption and catalyst sustainability are highly desirable for this transformation. Herein, an efficient, environmentally benign and non-toxic halide free cooperative catalyst system based on an iron(iii) benzoate complex and guanidinium carbonate is reported.

View Article and Find Full Text PDF

Metal-ligand cooperation, in which both the metal and the ligand of a transition metal complex actively participate in chemical transformations leading to enhanced reactivity or selectivity in chemical reactions, has emerged as a powerful and versatile concept in catalysis. This Viewpoint discusses the development trajectory of transition metal-based complexes as catalysts in (de)hydrogenative processes, in particular those cases where metal-ligand cooperation has been invoked to rationalise the observed high reactivities and excellent selectivities. The historical context, mechanistic aspects and current applications are discussed with the suggestion to explore the potential of the MLC mode of action of such catalysts in enantioselective transformations beyond (de)hydrogenative processes.

View Article and Find Full Text PDF

This paper presents a Mn(I)-catalysed methodology for the enantioselective hydrophosphination of terminal alkenyl aza-heteroarenes. The catalyst operates through H-P bond activation, enabling successful hydrophosphination of a diverse range of alkenyl-heteroarenes with high enantioselectivity. The presented protocol addresses the inherently low reactivity and the commonly encountered suboptimal enantioselectivities of these challenging substrates.

View Article and Find Full Text PDF

Oscillatory systems regulate many biological processes, including key cellular functions such as metabolism and cell division, as well as larger-scale processes such as circadian rhythm and heartbeat. Abiotic chemical oscillations, discovered originally in inorganic systems, inspired the development of various synthetic oscillators for application as autonomous time-keeping systems in analytical chemistry, materials chemistry and the biomedical field. Expanding their role beyond that of a pacemaker by having synthetic chemical oscillators periodically drive a secondary function would turn them into significantly more powerful tools.

View Article and Find Full Text PDF

Here we report catalytic asymmetric hydrophosphination of α,β-unsaturated carbonyl derivatives using a chiral Mn(I) complex as a catalyst. Through H-P bond activation, various phosphine-containing chiral products can be accessed via hydrophosphination of various ketone-, ester-, and carboxamide-based Michael acceptors.

View Article and Find Full Text PDF

Olefins are ubiquitous in biologically active molecules and frequently used as building blocks in chemical transformations. However, although many strategies exist for the synthesis of stereodefined -olefines, their thermodynamically less stable counterparts are substantially more demanding, while access to those bearing an allylic stereocenter with an adjacent reactive functionality remains unsolved altogether. Even the classic Wittig reaction, arguably the most versatile and widely used approach to construct -alkenes, falls short for the synthesis of these particularly challenging yet highly useful structural motives.

View Article and Find Full Text PDF

Nitrogen-bearing rings are common features in the molecular structures of modern drugs, with chiral δ-lactams being an important subclass due to their known pharmacological properties. Catalytic dearomatization of preactivated pyridinium ion derivatives emerged as a powerful method for the rapid construction of chiral N-heterocycles. However, direct catalytic dearomatization of simple pyridine derivatives are scarce and methodologies yielding chiral δ-lactams are yet to be developed.

View Article and Find Full Text PDF

We present our design of a cross-catalytic system based on organocatalysis. The system features two organic reactions, namely a deprotection reaction of Fmoc protected proline and a Mannich reaction between acetone and dihydroisoquinoline. The products of these two reactions, proline and a tetrahydroisoquinoline, respectively, are capable of reciprocal reaction rate enhancement.

View Article and Find Full Text PDF

In this work, we demonstrate how allylative dearomatization of benzyl chlorides can provide direct access to a variety of semibenzenes. These scaffolds behave as highly reactive nucleophiles in the presence of carbocations. In addition, semibenzenes are susceptible to intramolecular rearrangements rendering a broad scope of functionalized arenes.

View Article and Find Full Text PDF

The synthesis of aniline derivatives, common building blocks in many pharmaceuticals, agrochemicals, dyes or polymers, has been limited to reactions based on benzene-toluene-xylene derivatives (BTX) due to their ample availability. Despite the large number of existing methodologies, the synthesis of chiral 4-(sec-alkyl)anilines has not been accomplished so far. In this work, a tandem strategy based on the generation of a reactive aza--quinone methide (aza--QM) intermediate followed by Cu(I)-catalyzed addition of Grignard reagents has been developed.

View Article and Find Full Text PDF

Chiral bisphosphine ligands are of key importance in transition-metal-catalyzed asymmetric synthesis of optically active products. However, the transition metals typically used are scarce and expensive noble metals, while the synthetic routes to access chiral phosphine ligands are cumbersome and lengthy. To make homogeneous catalysis more sustainable, progress must be made on both fronts.

View Article and Find Full Text PDF

Herein we report the first alkynylation of quinolones with terminal alkynes under mild reaction conditions. The reaction is catalyzed by Cu(I) salts in the presence of a Lewis acid, which is essential for the reactivity of the system. The enantioselective version of this transformation has also been explored, and the methodology has been applied in the synthesis of the enantioenriched tetrahydroquinoline alkaloid cuspareine.

View Article and Find Full Text PDF

Here we report that chiral Mn(I) complexes are capable of H-P bond activation. This activation mode enables a general method for the hydrophosphination of internal and terminal α,β-unsaturated nitriles. Metal-ligand cooperation, a strategy previously not considered for catalytic H-P bond activation, is at the base of the mechanistic action of the Mn(I)-based catalyst.

View Article and Find Full Text PDF

Pd-catalyzed allylative dearomatisation of naphthyl halides is shown to be feasible by employing Grignard reagents. The high reactivity of the nucleophile allows for fast reactions and low catalyst loading, while a plethora of successfully substituted compounds illustrate the broad scope. Five membered heteroaromatic compounds are also demonstrated to be reactive under similar conditions.

View Article and Find Full Text PDF

We describe a general catalytic methodology for the enantioselective dearomative alkylation of pyridine derivatives with Grignard reagents, allowing direct access to nearly enantiopure chiral dihydro-4-pyridones with yields up to 98%. The methodology involves dearomatization of in situ-formed -acylpyridinium salts, employing alkyl organomagnesium reagents as nucleophiles and a chiral copper (I) complex as the catalyst. Computational and mechanistic studies provide insights into the origin of the reactivity and enantioselectivity of the catalytic process.

View Article and Find Full Text PDF

Dearomative functionalization of heteroaromatics, a readily available chemical feedstock, is one of the most straightforward approaches for the synthesis of three-dimensional, chiral heterocyclic systems, important synthetic building blocks for both synthetic chemistry and drug discovery. Despite significant efforts, direct nucleophilic additions to heteroaromatics have remained challenging because of the low reactivity of aromatic substrates associated with the loss of aromaticity, as well the regio- and stereoselectivities of the reaction. Here we present a catalytic system that leads to unprecedented, high-yielding dearomative C-4 functionalization of quinolines with organometallics with nearly absolute regio- and stereoselectivities and with a catalyst turnover number (TON) as high as 1000.

View Article and Find Full Text PDF

Two-step dearomative functionalization of naphthols promoted by Lewis acids and copper(I) catalysis was developed. Initially, Lewis acid complexation inverted the electronic properties of the ring and established an equilibrium with the dearomatized counterpart. Subsequent trapping of the dearomatized intermediate with organometallics as well as organophosphines was demonstrated and provided the corresponding dearomatized products.

View Article and Find Full Text PDF

Chiral indole derivatives are ubiquitous motifs in pharmaceuticals and alkaloids. Herein, the first protocol for catalytic asymmetric conjugate addition of Grignard reagents to various sulfonyl indoles, offering a straightforward approach for the synthesis of chiral 3-sec-alkyl-substituted indoles in high yields and enantiomeric ratios is presented. This methodology makes use of a chiral catalyst based on copper phosphoramidite complexes and in situ formation of vinylogous imine intermediates.

View Article and Find Full Text PDF

Copper-catalysed asymmetric C-C bond-forming reactions using organometallic reagents have developed into a powerful tool for the synthesis of complex molecules with single or multiple stereogenic centres over the past decades. Among the various acceptors employed in such reactions, those with a heterocyclic core are of particular importance because of the frequent occurrence of heterocyclic scaffolds in the structures of chiral natural products and bioactive molecules. Hence, this review focuses on the progress made over the past 20 years for heterocyclic acceptors.

View Article and Find Full Text PDF

Here we show trapping of chiral enolates with carbenium ions, Michael acceptors, and bromine. Silyl ketene aminals, disilyl acetals, and aza-enolates were obtained via Lewis acid mediated enantioselective conjugate addition of Grignard reagents to unsaturated amides, carboxylic acids and alkenyl heterocycles.

View Article and Find Full Text PDF

Conjugate addition of organometallics to carbonyl based Michael acceptors is a widely used method that allows the building of new carbon-carbon (C-C) bonds and the introduction of chirality in a single step. However, conjugate additions to the simplest Michael acceptors, namely unprotected, unsaturated carboxylic acids, are considered to be prohibited by the fact that acid-base reactions overpower any other type of reactivity, including nucleophilic addition. Here we describe a transient protecting group strategy that allows efficient catalytic asymmetric additions of organomagnesium reagents to unprotected α,β-unsaturated carboxylic acids.

View Article and Find Full Text PDF

General methods to prepare chiral N-heterocyclic molecular scaffolds are greatly sought after because of their significance in medicinal chemistry. Described here is the first general catalytic methodology to access a wide variety of chiral 2- and 4-substituted tetrahydro-quinolones, dihydro-4-pyridones, and piperidones with excellent yields and enantioselectivities, utilizing a single catalyst system.

View Article and Find Full Text PDF