In response to DNA damage, p53 and its homolog p73 have a function antagonistic to NF-kappaB in deciding cell fate. Here, we show for the first time that p73, but not p53, is stabilized by physical interaction with nuclear IkappaB kinase (IKK)-alpha to enhance cisplatin (CDDP)-induced apoptosis. CDDP caused a significant increase in the amounts of nuclear IKK-alpha and p73alpha in human osteosarcoma-derived U2OS cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2006
p73 responds to DNA damage and exerts its pro-apoptotic function. However, p73 might contribute to the development of drug-resistance in certain tumor cells. In this study, we found that p73 and MDM2 correlate with cisplatin-resistant phenotype of human epidermoid carcinoma-derived cells.
View Article and Find Full Text PDFp73 protein level is kept extremely low in mammalian cultured cells and its stability may be regulated by not only the ubiquitin/proteasome-dependent proteolysis but also through other unidentified mechanisms. Here, we found for the first time that p73 is physically as well as functionally associated with the U-box-type E3/E4 ubiquitin ligase UFD2a. The immunoprecipitation experiments demonstrated that this interaction is mediated by the COOH-terminal region of p73alpha containing SAM domain.
View Article and Find Full Text PDFp73, a newly identified member of p53 family, locates at human chromosome 1p36.2-3, a region which is frequently deleted in a wide variety of human tumors including neuroblastoma. p73 is induced to be accumulated in response to a subset of DNA damaging agents such as cisplatin, and thereby promoting G1/S cell cycle arrest and/or apoptosis.
View Article and Find Full Text PDFPost-translational modifications play a crucial role in regulation of the protein stability and pro-apoptotic function of p53 as well as its close relative p73. Using a yeast two-hybrid screening based on the Sos recruitment system, we identified protein kinase A catalytic subunit beta (PKA-Cbeta) as a novel binding partner of p73. Co-immunoprecipitation and glutathione S-transferase pull-down assays revealed that p73alpha associated with PKA-Cbeta in mammalian cells and that their interaction was mediated by both the N- and C-terminal regions of p73alpha.
View Article and Find Full Text PDFPolo-like kinase 1 (Plk1) has an important role in the regulation of M phase of the cell cycle. In addition to its cell cycle-regulatory function, Plk1 has a potential role in tumorigenesis. Here we found for the first time that Plk1 physically binds to the tumor suppressor p53 in mammalian cultured cells, and inhibits its transactivation activity as well as its pro-apoptotic function.
View Article and Find Full Text PDFp73 shares high sequence homology with the tumor suppressor p53. Like p53, ectopic overexpression of p73 induces cell cycle arrest and/or apoptosis, and these biological activities are linked to its sequence-specific transactivation function. The COOH-terminal region of p73 is unique and has a function to modulate DNA-binding ability and transactivation activity.
View Article and Find Full Text PDF