Publications by authors named "Syuan-Ming Guo"

Article Synopsis
  • Researchers have developed a new label-free computational microscopy technique called PT imaging (PTI) that allows for 3D imaging of biomolecules by measuring their permittivity tensor (PT), which reveals how they interact with light.
  • PTI utilizes oblique illumination and polarization-sensitive detection to encode PT into images, tackling previous challenges in achieving high-resolution imaging of various biological samples such as mouse brain tissue and infected cells.
  • This method outperforms older techniques and comes with open-source software and modular hardware, making it accessible for wider adoption in the scientific community.
View Article and Find Full Text PDF

A multiplexed enzyme-linked immunosorbent assay (ELISA) that simultaneously measures antibody binding to multiple antigens can extend the impact of serosurveillance studies, particularly if the assay approaches the simplicity, robustness, and accuracy of a conventional single-antigen ELISA. Here, we report on the development of multiSero, an open-source multiplex ELISA platform for measuring antibody responses to viral infection. Our assay consists of three parts: (1) an ELISA against an array of proteins in a 96-well format; (2) automated imaging of each well of the ELISA array using an open-source plate reader; and (3) automated measurement of optical densities for each protein within the array using an open-source analysis pipeline.

View Article and Find Full Text PDF

A cell's shape and motion represent fundamental aspects of cell identity and can be highly predictive of function and pathology. However, automated analysis of the morphodynamic states remains challenging for most cell types, especially primary human cells where genetic labeling may not be feasible. To enable automated and quantitative analysis of morphodynamic states, we developed DynaMorph-a computational framework that combines quantitative live cell imaging with self-supervised learning.

View Article and Find Full Text PDF

Serology has provided valuable diagnostic and epidemiological data on antibody responses to SARS-CoV-2 in diverse patient cohorts. Deployment of high content, multiplex serology platforms across the world, including in low and medium income countries, can accelerate longitudinal epidemiological surveys. Here we report multiSero, an open platform to enable multiplex serology with up to 48 antigens in a 96-well format.

View Article and Find Full Text PDF

We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using brightfield imaging.

View Article and Find Full Text PDF

Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides.

View Article and Find Full Text PDF

Neuronal synapses transmit electrochemical signals between cells through the coordinated action of presynaptic vesicles, ion channels, scaffolding and adapter proteins, and membrane receptors. In situ structural characterization of numerous synaptic proteins simultaneously through multiplexed imaging facilitates a bottom-up approach to synapse classification and phenotypic description. Objective automation of efficient and reliable synapse detection within these datasets is essential for the high-throughput investigation of synaptic features.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS) is a powerful technique to investigate molecular dynamics with single molecule sensitivity. In particular, in the life sciences it has found widespread application using fluorescent proteins as molecularly specific labels. However, FCS data analysis and interpretation using fluorescent proteins remains challenging due to typically low signal-to-noise ratio of FCS data and correlated noise in autocorrelated data sets.

View Article and Find Full Text PDF

Amyloid fibril deposition of human islet amyloid polypeptide (hIAPP) in pancreatic islet cells is implicated in the pathogenesis of type II diabetes. A growing number of studies suggest that small peptide aggregates are cytotoxic via their interaction with the plasma membrane, which leads to membrane permeabilization or disruption. A recent study using imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) showed that monomeric hIAPP induced the formation of cellular plasma membrane microdomains containing dense lipids, in addition to the modulation of membrane fluidity.

View Article and Find Full Text PDF

Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS) is a powerful approach to characterizing the binding and transport dynamics of macromolecules. The unbiased interpretation of FCS data relies on the evaluation of multiple competing hypotheses to describe an underlying physical process under study, which is typically unknown a priori. Bayesian inference provides a convenient framework for this evaluation based on the temporal autocorrelation function (TACF), as previously shown theoretically using model TACF curves (He, J.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS) is a powerful tool to infer the physical process of macromolecules including local concentration, binding, and transport from fluorescence intensity measurements. Interpretation of FCS data relies critically on objective multiple hypothesis testing of competing models for complex physical processes that are typically unknown a priori. Here, we propose an objective Bayesian inference procedure for testing multiple competing models to describe FCS data based on temporal autocorrelation functions.

View Article and Find Full Text PDF

Statherin is an active inhibitor of calcium phosphate precipitation in the oral cavity. For many studies of the interaction between statherin and hydroxyapatite (HAp), the samples are prepared by a direct mixing of statherin or its fragment with well-crystalline HAp crystals. In this work, the HAp sample is precipitated in the presence of peptide fragment derived from the N-terminal 15 amino acids of statherin (SN-15).

View Article and Find Full Text PDF