Unveiling the key pathways underlying postnatal beta-cell proliferation can be instrumental to decipher the mechanisms of beta-cell mass plasticity to increased physiological demand of insulin during weight gain and pregnancy. Using transcriptome and global Serine Threonine Kinase activity (STK) analyses of islets from newborn (10 days old) and adult rats, we found that highly proliferative neonatal rat islet cells display a substantially elevated activity of the mitogen activated protein 3 kinase 12, also called dual leucine zipper-bearing kinase (Dlk). As a key upstream component of the c-Jun amino terminal kinase (Jnk) pathway, Dlk overexpression was associated with increased Jnk3 activity and was mainly localized in the beta-cell cytoplasm.
View Article and Find Full Text PDFIn order to understand the pathobiology of neurotrophic keratopathy, we established a mouse model by coagulating the first branch of the trigeminal nerve (V1 nerve). In our model, the sensory nerve in the central cornea disappeared and remaining fibers were sparse in the peripheral limbal region. Impaired corneal epithelial healing in the mouse model was associated with suppression of both cell proliferation and expression of stem cell markers in peripheral/limbal epithelium as well as a reduction of transient receptor potential vanilloid 4 (TRPV4) expression in tissue.
View Article and Find Full Text PDFDual leucine zipper-bearing kinase (DLK) is an inducer of keratinocyte differentiation, a complex process also involving microtubule reorganization to the cell periphery. However, signaling mechanisms involved in this process remain to be elucidated. Here, we demonstrate that DLK enhances and is required for microtubule reorganization to the cell periphery in human cell culture models and in Dlk knockout mouse embryos.
View Article and Find Full Text PDFIn mouse cerebral corticogenesis, neurons are generated from radial glial cells (RGCs) or from their immediate progeny, intermediate neuronal precursors (INPs). The balance between self-renewal of these neuronal precursors and specification of cell fate is critical for proper cortical development, but the signaling mechanisms that regulate this progression are poorly understood. EphA4, a member of the receptor tyrosine kinase superfamily, is expressed in RGCs during embryogenesis.
View Article and Find Full Text PDFThe study of the external genitalia is divided into 2 developmental stages: the formation and growth of a bipotential genital tubercle (GT) and the sexual differentiation of the male and female GT. The sexually dimorphic processes, which occur during the second part of GT differentiation, are suggested to be governed by androgen signaling and more recently crosstalk with other signaling factors. The process of elucidating the regulatory mechanisms of hormone signaling towards other signaling networks in the GT is still in its early stages.
View Article and Find Full Text PDFBackground: The regulatory mechanisms of motor protein-dependent intracellular transport are still not fully understood. The kinesin-1-binding protein, JIP1, can function as an adaptor protein that links kinesin-1 and other JIP1-binding "cargo" proteins. However, it is unknown whether these "cargo" proteins influence the JIP1-kinesin-1 binding.
View Article and Find Full Text PDFGlaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs.
View Article and Find Full Text PDFDendritic spines are postsynaptic structures that receive excitatory synaptic input from presynaptic terminals. Actin and its regulatory proteins play a central role in morphogenesis of dendritic spines. In addition, recent studies have revealed that microtubules are indispensable for the maintenance of mature dendritic spine morphology by stochastically invading dendritic spines and regulating dendritic localization of p140Cap, which is required for actin reorganization.
View Article and Find Full Text PDFStudies using cultured neurons have established the critical role of microtubule regulators in neuronal polarization. The c-Jun N-terminal kinase (JNK) pathway is one of the candidate signaling pathways driving microtubule regulation during neuronal polarization. However, the significance of the JNK pathway in axon formation, a fundamental step in neuronal polarization, in vivo, remains unclear.
View Article and Find Full Text PDFDoublecortin (DCX) is expressed in young neurons and functions as a microtubule-associated protein. DCX is essential for neuronal migration because humans with mutations in the DCX gene exhibit cortical lamination defects known as lissencephaly in males and subcortical laminar heterotopia (or double cortex syndrome) in females. Phosphorylation of DCX alters its affinity for tubulin and may modulate neurite extension and neuronal migration.
View Article and Find Full Text PDFA de novo 9q33.3-q34.11 microdeletion involving STXBP1 has been found in one of four individuals (group A) with early-onset West syndrome, severe hypomyelination, poor visual attention, and developmental delay.
View Article and Find Full Text PDFEarly infantile epileptic encephalopathy with suppression-burst (EIEE), also known as Ohtahara syndrome, is one of the most severe and earliest forms of epilepsy. Using array-based comparative genomic hybridization, we found a de novo 2.0-Mb microdeletion at 9q33.
View Article and Find Full Text PDFCollapsin response mediator protein 1 (CRMP1) is one of the CRMP family members that mediates signal transduction of axon guidance molecules. Here, we show evidence that CRMP1 is involved in Reelin (Reln) signaling to regulate neuronal migration in the cerebral cortex. In crmp1-/- mice, radial migration of cortical neurons was retarded.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2007
Studies of islet neogenesis have suggested that the regeneration of islet cells can be achieved through redifferentiation of pre-existing islet cells. However, this hypothesis is largely unproven and fails to account for the diversity of observed islet neogenesis. Here we show that cultured neonatal pancreatic cells dedifferentiate into betaIII tubulin-expressing precursors, which then expand and redifferentiate into both neural and pancreatic lineage progenies.
View Article and Find Full Text PDFMammalian corticogenesis substantially depends on migration and axon projection of newborn neurons that are coordinated by a yet unidentified molecular mechanism. Dual leucine zipper kinase (DLK) induces activation of c-Jun N-terminal kinase (JNK), a molecule that regulates morphogenesis in various organisms. We show here, using gene targeting in mice, that DLK is indispensable for establishing axon tracts, especially those originating from neocortical pyramidal neurons of the cerebrum.
View Article and Find Full Text PDFIn developing mammalian telencephalon, the loss of adherens junctions and cell cycle exit represent crucial steps in the differentiation of neuroepithelial cells into neurons, but the relationship between these cellular events remains obscure. Atypical protein kinase C (aPKC) is known to contribute to junction formation in epithelial cells and to cell fate determination for Drosophila neuroblasts. To elucidate the functions of aPKClambda, one out of two aPKC members, in mouse neocortical neurogenesis, a Nestin-Cre mediated conditional gene targeting system was employed.
View Article and Find Full Text PDFJNK is one of the key molecules regulating cell differentiation and migration in a variety of cell types, including cerebral cortical neurons. MUK/DLK/ZPK belongs to the MAP kinase-kinase-kinase class of protein kinases for the JNK pathway and is expressed predominantly in neural tissue. We have determined the expression pattern of MUK/DLK/ZPK and active JNK in the cerebellum at different stages of postnatal development.
View Article and Find Full Text PDFVon Hippel-Lindau (VHL) disease is associated with various missense germline mutations in the VHL tumor suppressor gene. Some are associated with type 1 VHL disease, renal cell carcinoma (RCC) without pheochromocytoma, while others are associated with type 2A or 2B VHL disease, pheochromocytoma without and with RCC, respectively. These mutations may cause substitutions of specific amino acid residue and functional change of VHL protein (pVHL), which leads to the oncogenesis of the particular tumor types that characterize the different VHL disease types.
View Article and Find Full Text PDFC-Jun N-terminal kinase (JNK) is implicated in regulating the various cellular events during neural development that include differentiation, apoptosis and migration. MUK/DLK/ZPK is a MAP kinase kinase kinase (MAPKKK) enzyme that activates JNK via MAP kinase kinases (MAPKK) such as MKK7. We show here that the expression of MUK/DLK/ZPK protein in the developing mouse embryo is almost totally specific for the neural tissues, including central, peripheral, and autonomic nervous systems.
View Article and Find Full Text PDFBackground: DNA vaccines have been used to induce both humoral and cellular immune responses against infectious microorganisms. This study explores whether DNA vaccine immunogenicity can be improved by introducing inverted terminal repeats (ITRs) from adeno-associated virus (AAV) into the regulatory region of the DNA plasmid.
Methods: CMV promoter-driven HIV Env expressing plasmid (pCMV-HIV) and the pCMV-HIV plasmid introduced ITRs (pITR/CMV-HIV) were transfected in HEK293 cells with LipofectAmine.
The radial migration of differentiating neurons provides an essential step in the generation of laminated neocortex, although its molecular mechanism is not fully understood. We show that the protein levels of a JNK activator kinase, MUK/DLK/ZPK, and JNK activity increase potently and temporally in newly generated neurons in developing mouse telencephalon during radial migration. The ectopic expression of MUK/DLK/ZPK in neural precursor cells in utero impairs radial migration, whereas it allows these cells to leave the ventricular zone and differentiate into neural cells.
View Article and Find Full Text PDFPolarity proteins play fundamental roles in asymmetric cell division, which is essential for the production of different types of cells in multicellular organisms. Here, we explore the localization of atypical PKC isotype-specific interacting protein (ASIP), a mammalian homologue of the Caenorhabditis elegans polarity protein PAR-3, in embryonic neural tissues. Although ASIP is localized on tight junctions in cultured epithelial cells, it localizes on adherens junctions outlined by beta-catenin and afadin at the luminal surface, an apical end of the neuroepithelium in developing mouse central nervous systems.
View Article and Find Full Text PDF