Publications by authors named "Sysoiev D"

We have assembled 4,8,12-tri--octyl-4,8,12-triazatrianguleniumtetrafluoroborate (TATA-BF) on highly oriented pyrolytic graphite (HOPG) and have studied the structure and tunneling properties of this self-assembled monolayer (SAM) using scanning tunneling microscopy (STM) under ambient conditions. We show that the triazatriangulenium cations TATA form hexagonally packed structures driven by the interaction between the aromatic core and the HOPG lattice, as evidenced by density functional theory (DFT) modeling. According to the DFT results, the three alkyl chains of the platform tend to follow the main crystallographic directions of HOPG, leading to a different STM appearance.

View Article and Find Full Text PDF

Chemical coupling of functional molecules on top of the so-called platform molecules allows the formation of functional self-assembled monolayers (SAMs). An often-used example of such a platform is triazatriangulenium (TATA), which features an extended aromatic core providing good electronic contact to the underlying metal surface. Here, we present a study of the SAM formation of a TATA platform on Au(111) employing scanning tunneling microscopy (STM) under ambient atmospheric conditions.

View Article and Find Full Text PDF

Non-photochemical degradation of perfluorinated photochromic diarylethenes (DAE) under Knoevenagel, Sonogashira or Wittig conditions was discovered. This base promoted formation of strongly colored non-photochromic byproducts has an impact in the field of molecular electronics due to the basic conditions often employed during deacylation and desilylation of the protected thiol anchoring groups of functionalized DAE. The products were identified as seven-membered ring systems of the bicyclo[5.

View Article and Find Full Text PDF

Bis(benzothienyl)ethene sulfones are very interesting molecules for super-resolution microscopy due to their photoswitching properties. However, functionalization of the 'classical' bis(benzothienyl)ethene sulfones with a five-membered central ring leads to significant decrease of quantum yields of photoconversion of the fluorescent closed form of the dye to the non-fluorescent open form that limits their application in microscopy. Here, we designed and synthesized diarylethenes with a fluorinated four-membered central ring that adds extra strain to the closed form of the dye.

View Article and Find Full Text PDF

Four-component reactions of 3-amino-1,2,4-triazole or 5-amino-1-pyrazole-4-carbonitrile with aromatic aldehydes and pyruvic acid or its esters under ultrasonication were studied. Unusual for such a reaction type, a cascade of elementary stages led to the formation of 7-azolylaminotetrahydroazolo[1,5-]pyrimidines.

View Article and Find Full Text PDF

The in situ nanoscopic imaging of soft matter polymer structures is of importance to gain knowledge of the relationship between structure, properties, and functionality on the nanoscopic scale. Cross-linking of polymer chains effects the viscoelastic properties of gels. The correlation of mechanical properties with the distribution and amount of cross-linkers is relevant for applications and for a detailed understanding of polymers on the molecular scale.

View Article and Find Full Text PDF

Super-resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super-resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light.

View Article and Find Full Text PDF

Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique.

View Article and Find Full Text PDF

Using scanning tunneling microscopy and spectroscopy we investigate the adsorption properties and ring-closing reaction of a diarylethene derivative (C5F-4Py) on a Ag(1 1 1) surface. We identify an electron-induced reaction mechanism, with a quantum yield varying from 10-10 per electron upon variation of the bias voltage from 1-2 V. We ascribe the drastic increase in switching efficiency to a resonant enhancement upon tunneling through molecular orbitals.

View Article and Find Full Text PDF

Diarylethene molecules are prototype molecular switches with their two isomeric forms exhibiting strikingly different conductance, while maintaining similar length. We employed low-temperature scanning tunneling microscopy (STM) to resolve the energy and the spatial extend of the molecular orbitals of the open and closed isomers when lying on a Au(111) surface. We find an intriguing difference in the extension of the respective HOMOs and a peculiar energy splitting of the formerly degenerate LUMO of the open isomer.

View Article and Find Full Text PDF

The in situ imaging of soft matter is of paramount importance for a detailed understanding of functionality on the nanoscopic scale. Although super-resolution fluorescence microscopy methods with their unprecedented imaging capabilities have revolutionized research in the life sciences, this potential has been far less exploited in materials science. One of the main obstacles for a more universal application of super-resolved fluorescence microscopy methods is the limitation of readily available suitable dyes to overcome the diffraction limit.

View Article and Find Full Text PDF

We report on an experimental study of the charge transport through tunnel gaps formed by adjustable gold electrodes immersed into different solvents that are commonly used in the field of molecular electronics (ethanol, toluene, mesitylene, 1,2,4-trichlorobenzene, isopropanol, toluene/tetrahydrofuran mixtures) for the study of single-molecule contacts of functional molecules. We present measurements of the conductance as a function of gap width, conductance histograms as well as current-voltage characteristics of narrow gaps and discuss them in terms of the Simmons model, which is the standard model for describing transport via tunnel barriers, and the resonant single-level model, often applied to single-molecule junctions. One of our conclusions is that stable junctions may form from solvents as well and that both conductance-distance traces and current-voltage characteristics have to be studied to distinguish between contacts of solvent molecules and of molecules under study.

View Article and Find Full Text PDF

The switchable three-component reactions of 5-amino-3-methylisoxazole, salicylaldehyde and N-aryl-3-oxobutanamides under different conditions were studied and discussed. The unexpected influence of the aryl substituent in N-aryl-3-oxobutanamides on the behavior of the reaction was discovered. The key influence of ultrasonication and Lewis acid catalysts led to an established protocol to selectively obtain two or three types of heterocyclic scaffolds depending on the substituent in the N-aryl moiety.

View Article and Find Full Text PDF

Azobenzene-derivative molecules change their conformation as a result of a cis-trans transition when exposed to ultraviolet or visible light irradiation and this is expected to induce a significant variation in the conductance of molecular devices. Despite extensive investigations carried out on this type of molecule, a detailed understanding of the charge transport for the two isomers is still lacking. We report a combined experimental and theoretical analysis of electron transport through azobenzene-derivative single-molecule break junctions with Au electrodes.

View Article and Find Full Text PDF

We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes.

View Article and Find Full Text PDF

Several difurylperfluorocyclobutenes showing reversible photochromism were synthesized. In comparison to their cyclopentene homologues they show enhanced quantum yields for ring opening but reduced quantum yields for ring closure. X-ray structure analysis and quantum chemical calculations provide a conclusive explanation for such a behaviour.

View Article and Find Full Text PDF

We report on the experimental analysis of the charge transport through single-molecule junctions of the open and closed isomers of photoswitching molecules. Sulfur-free diarylethene molecules are developed and studied via electrical and optical measurements as well as density functional theory calculations. The single-molecule conductance and the current-voltage characteristics are measured in a mechanically controlled break-junction system at low temperatures.

View Article and Find Full Text PDF

In an attempt to design molecular optoelectronic switches functioning in molecular junctions between two metal tips, we synthesized a set of photochromic compounds by extending the π-system of 1,2-bis-(2-methyl-5-formylfuran-3-yl)perfluorocyclopentene through suitable coupling reactions involving the formyl functions, thereby also introducing terminal groups with a binding capacity to gold. Avoiding the presence of gold-binding sulphur atoms in the photoreactive centre, as they are present in the frequently used analogous thienyl compounds, the newly synthesized compounds should be more suitable for the purpose indicated. The kinetics of reversible photoswitching of the new compounds by UV and visible light was quantitatively investigated in solution.

View Article and Find Full Text PDF