Mitochondria uncoupling protein2 (UCP2) expressed ubiquitously is a key molecule of energy metabolism. Insulin-like growth factor-1 (IGF-1) is a hormone, a target molecule of growth hormone (GH) signal pathway, which is also known as the drug "mecasermin" for clinical usages. IGF-1 is seemed to be closely related to metabolic diseases, such as adult GH deficiency.
View Article and Find Full Text PDFObjective: The objective of our study was to examine the direct action of insulin-like growth factor-1(IGF-1) signaling on energy homeostasis in myocytes.
Design: We studied the IGF-1 stimulation of mitochondrial uncoupling protein 3 (UCP3) expression in the HEK 293 derived cell line TSA201, murine C2C12 skeletal muscle myoblasts, and rat L6 skeletal myoblasts. We also investigated the direct effect of IGF-1 on the Insulin/IGF-1 receptor (IGF-1R)/phosphatidylinositol 3 (PI3)-Akt/forkhead box O4 (FOXO4) pathway using a combination of a reporter assay, semi-quantitative polymerase chain reaction, western blotting, and animal experiments.
Objective: We evaluated the direct action of GH signaling in energy homeostasis in myocytes.
Design: We investigated the GH-induced expression of UCP3 in human embryonic kidney 293 cells, human H-EMC-SS chondrosarcoma cells, murine C2C12 skeletal muscle myoblasts, and rat L6 skeletal muscle cells, as well as its direct effect on the GHR/JAK/STAT5 pathway using a combination of a reporter assay, real-time quantitative polymerase chain reaction, and western blotting.
Results: We demonstrated that the regulation of energy metabolism by GH involves UCP3 via activated STAT5, a signal transducer downstream of GH.
Objective: The transition of white adipocytes to beige cells (a phenomenon referred to as browning or beigeing) during obesity has been previously reported. Our study aimed to examine the mechanisms through which obesity induced by a high fat diet (HFD) affects uncoupling protein 1 (UCP1) expression via signal transduction and activator of transcription 5 (STAT5s).
Design: Seven-week-old male C57BL/6J mice were fed a normal or HFD for 11weeks.
Objective: To determine if and how growth hormone (GH) signaling is involved in energy metabolism.
Design: We used human embryonic kidney TSA201 cells, human H-EMC-SS chondrosarcoma cells, rat L6 skeletal muscle cells, and murine C2C12 skeletal muscle myoblasts to investigate GH-induced expression of uncoupling protein2 (UCP2) to the GHR/JAK/STAT5 pathway by a combination of a reporter assay, electrophoretic mobility shift assay (EMSA), real-time quantitative PCR, Western blotting.
Results: We demonstrated that the regulation energy metabolism, which was hypothesized to be directly acted on by GH, involves UCP2 via activated STAT5B, a signal transducer downstream of GH.