Publications by authors named "Synthia P Mallick"

Per- and polyfluoroalkyl substances (PFAS) are widely used in consumer products and are particularly high in landfill leachate. The practice of sending leachate to wastewater treatment plants (WWTPs) is an issue for utilities that have biosolids land application limits based on PFAS concentrations. Moreover, landfills may face their own effluent limit guidelines for PFAS.

View Article and Find Full Text PDF

Landfill leachate properties contain important information and can be a unique indicator for the chemical and biochemical activities in landfills. In the recent decade, more landfills are experiencing elevated temperature, causing an imbalance in the decomposition of solid waste and affecting the properties of the landfill leachate. This study analyzes the properties of leachate from two landfills that were experiencing elevated temperature (ETLFs), samples were collected from both elevated temperature impacted and non-impacted areas in each landfill.

View Article and Find Full Text PDF

Currently available wastewater phosphorus (P) treatment technologies target removal of reactive forms of P. Selective adsorption of more recalcitrant soluble non-reactive phosphorus (sNRP) can improve P removal and recovery. A phosphate-selective phosphate-binding protein (PBP), PstS, was immobilized onto NHS-activated beads to assess the ability of this novel bioadsorbent to remove (adsorb) and subsequently recover (desorb) a range of sNRP compounds.

View Article and Find Full Text PDF

Most wastewater removal and recovery processes primarily target dissolved inorganic nitrogen (DIN) species, leaving the untreated non-reactive dissolved organic nitrogen (DON) in the effluent. This DON fraction can account for a substantial part of the total nitrogen (N) load. We analyzed large datasets of N species and concentrations (with a focus on quantifying the fraction of DON) in surface water, ground water, and wastewater effluent across the United States.

View Article and Find Full Text PDF

Conventional wastewater treatment processes cannot effectively remove dissolved organic nitrogen (DON) and soluble non-reactive phosphorus (sNRP), which can pose regulatory compliance challenges for total nitrogen and total phosphorus discharges. Moreover, DON and sNRP are not easily recoverable for beneficial reuse as part of the waste to resource paradigm. Conversion of DON and sNRP to more readily removable dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (sRP), respectively, will help meet stringent nutrient limits and facilitate nutrient recovery.

View Article and Find Full Text PDF

Soluble non-reactive phosphorus (sNRP), such as inorganic polyphosphates and organic P, is not effectively removed by conventional physicochemical processes. This can impede water resource reclamation facilities' ability to meet stringent total P regulations. This study investigated a UV/HO advanced oxidation process (AOP) for converting sNRP to the more readily removable/recoverable soluble reactive P (sRP), or orthophosphate, form.

View Article and Find Full Text PDF