Ocean warming will continue to affect the growth, body condition and geographic distributions of marine fishes and understanding these effects is an urgent challenge for fisheries research and management. Determining how temperature is recorded in fish otolith carbonate, provides an additional chronological tool to investigate thermal histories, preferences and patterns of movement throughout an individual's life history. The influence of three water temperature treatments (22°C, 25°C, and 28°C) on hatchery-reared juvenile stout whiting, Sillago robusta, was tested using a controlled outdoor mesocosm system.
View Article and Find Full Text PDFSea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change.
View Article and Find Full Text PDFPhytoplankton abundance is decreasing and becoming more variable as the ocean climate changes. We examine how low, high, and variable phytoplankton food supply affected the survival, development, and growth of larval crown-of-thorns starfish, Acanthaster sp. exposed to combined warming (26, 30 °C) and acidification (pH 8.
View Article and Find Full Text PDFAbstractCrown-of-thorns sea stars ( sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of sp.
View Article and Find Full Text PDFAbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars.
View Article and Find Full Text PDFWe compared the effects of preservation and storage methods on total alkalinity (A) of seawater, estuarine water, freshwater, and groundwater samples stored for 0-6 months. Water samples, untreated or treated with HgCl, 0.45 µm filtration, or filtration plus HgCl, were stored in polypropylene or borosilicate glass vials for 0, 1, or 6 months.
View Article and Find Full Text PDFThe ecology of the early herbivorous juvenile stage of the crown-of-thorns sea star (COTS, Acanthaster spp.) is poorly understood, yet the success of this life stage is key to generating population outbreaks that devastate coral reefs. Crustose coralline algae (CCA) has been considered to be the main diet of herbivorous juveniles.
View Article and Find Full Text PDFLarge numbers of hatchery-reared fish are released in stocking programmes; however, success is limited by high mortality. Predation is seen as the main cause of deaths but might be reduced by training fish before release to avoid predators and/or use refuge. In this study on a potential restocking species, yellowfin bream Acanthopagrus australis, the effects of predator training and refuge on the behaviour of fish in the hatchery were tested.
View Article and Find Full Text PDFCrown-of-thorns seastar (COTS) outbreaks are a major threat to coral reefs. Although the herbivorous juveniles and their switch to corallivory are key to seeding outbreaks, they remain a black box in our understanding of COTS. We investigated the impact of a delay in diet transition due to coral scarcity in cohorts reared on crustose coralline algae for 10 months and 6.
View Article and Find Full Text PDFGlobal climate change is driving sea level rise and increasingly frequent storm events, which are negatively impacting rapidly-growing coastal communities. To mitigate these impacts, coastal infrastructure must be further protected by upgrading hard defences. We propose that incorporating pH-buffering materials into these upgrades could safeguard marine organisms from the adverse effects of ocean acidification and ocean warming during the vulnerable transition from planktonic larvae to benthic juveniles.
View Article and Find Full Text PDFUnderstanding how growth trajectories of calcifying invertebrates are affected by changing climate requires acclimation experiments that follow development across life-history transitions. In a long-term acclimation study, the effects of increased acidification and temperature on survival and growth of the tropical sea urchin from the early juvenile (5 mm test diameter-TD) through the developmental transition to the mature adult (60 mm TD) were investigated. Juveniles were reared in a combination of three temperature and three pH/CO treatments, including treatments commensurate with global change projections.
View Article and Find Full Text PDFThe indirect effects of changing climate in modulating trophic interactions can be as important as the direct effects of climate stressors on consumers. The success of the herbivorous juvenile stage of the crown-of-thorns starfish (COTS), may be affected by the impacts of ocean conditions on its crustose coralline algal (CCA) food. To partition the direct effects of near future ocean acidification on juvenile COTS and indirect effects through changes in their CCA food, COTS were grown in three pH levels (7.
View Article and Find Full Text PDFThere is growing concern about the combined effects of multiple human-induced stressors on biodiversity. In particular, there are substantial knowledge gaps about the combined effects of existing stressors (e.g.
View Article and Find Full Text PDFSelection by consumers has led to the evolution of a vast array of defenses in animals and plants. These defenses include physical structures, behaviors, and chemical signals that mediate interactions with predators. Some of the strangest defensive structures in nature are the globiferous pedicellariae of the echinoderms.
View Article and Find Full Text PDFTrophic subsidies can drive widespread ecological change, thus knowledge of how keystone species respond to subsidies is important. Aquaculture of large carnivorous fish generates substantial waste as faeces and lost feed, providing a food source to mobile benthic invertebrates. We used a controlled feeding study combined with a field survey to better understand the interaction between salmon aquaculture and the sea urchin, Echinus acutus, a dominant mobile invertebrate in Norwegian fjords.
View Article and Find Full Text PDFCrown-of-thorns starfish, Acanthaster planci (COTS), predation is a major cause of coral reef decline, but the factors behind their population outbreaks remain unclear. Increased phytoplankton food resulting from eutrophication is suggested to enhance larval survival. We addressed the hypothesis that larval success is associated with particular chl-a levels in tightly controlled larval:algal conditions.
View Article and Find Full Text PDFAquaculture of higher trophic level species is increasingly dependent on the use of terrestrial oil products. The input of terrestrially derived n-6 polyunsaturated fatty acids (PUFA) into marine environments has subsequently increased, with unknown consequences for recipient species. We exposed a sea urchin, Heliocidaris erythrogramma to three experimental diets for 78 days: a high n-3 PUFA marine imitation treatment, a high n-6 PUFA "future aquafeed" treatment and an intermediate "current aquafeed" treatment.
View Article and Find Full Text PDFThe combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf).
View Article and Find Full Text PDFDecreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition.
View Article and Find Full Text PDFSeaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum--brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma--red seaweeds).
View Article and Find Full Text PDFHigh density populations of the crown-of-thorns seastar, Acanthaster planci, are a major contributor to the decline of coral reefs, however the causes behind periodic outbreaks of this species are not understood. The enhanced nutrients hypothesis posits that pulses of enhanced larval food in eutrophic waters facilitate metamorphic success with a flow-on effect for population growth. The larval resilience hypothesis suggests that A.
View Article and Find Full Text PDFTo predict the effects of global change on marine populations, it is important to measure the effects of climate stressors on performance and potential for adaptation. Adaptation depends on heritable genetic variance for stress tolerance being present in populations. We determined the effects of near-future ocean conditions on fertilization success of the sea urchin Pseudoboletia indiana.
View Article and Find Full Text PDFWe examined the long-term effects of near-future changes in temperature and acidification on skeletal mineralogy, thickness, and strength in the sea urchin Tripneustes gratilla reared in all combinations of three pH (pH 8.1, 7.8, 7.
View Article and Find Full Text PDF