Publications by authors named "Symeon Nikitidis"

A recently introduced latent feature learning technique for time-varying dynamic phenomena analysis is the so-called slow feature analysis (SFA). SFA is a deterministic component analysis technique for multidimensional sequences that, by minimizing the variance of the first-order time derivative approximation of the latent variables, finds uncorrelated projections that extract slowly varying features ordered by their temporal consistency and constancy. In this paper, we propose a number of extensions in both the deterministic and the probabilistic SFA optimization frameworks.

View Article and Find Full Text PDF

Visual pattern recognition from images often involves dimensionality reduction as a key step to discover a lower dimensional image data representation and obtain a more manageable problem. Contrary to what is commonly practiced today in various recognition applications where dimensionality reduction and classification are independently treated, we propose a novel dimensionality reduction method appropriately combined with a classification algorithm. The proposed method called maximum margin projection pursuit, aims to identify a low dimensional projection subspace, where samples form classes that are better discriminated, i.

View Article and Find Full Text PDF

Current discriminant nonnegative matrix factorization (NMF) methods either do not guarantee convergence to a stationary limit point or assume a compact data distribution inside classes, thus ignoring intra class variance in extracting discriminant data samples representations. To address both limitations, we regard that data inside each class has a multimodal distribution, forming various subclasses and perform optimization using a projected gradients framework to ensure limit point stationarity. The proposed method combines appropriate clustering-based discriminant criteria in the NMF decomposition cost function, in order to find discriminant projections that enhance class separability in the reduced dimensional projection space, thus improving classification performance.

View Article and Find Full Text PDF