Publications by authors named "Sylwia Przybysz-Gloc"

The research presented in this paper focused on optimising the process of unconventional plastic forming by hydrostatic extrusion (HE) with post-processing heat treatment of a copper alloy (CuCrZr) for electro-discharge machining (EDM) applications. The treatment was carried out in such a way as to obtain a material with an improved microstructure, characterised by a significant increase in hardness and strength while maintaining a high electrical conductivity, thus achieving the main goal of reducing electrode wear in the EDM process. As part of the research, a material with an ultrafine-grained structure was obtained with an average grain size of = 320 nm and a much higher strength of = 645 MPa compared to the material in the initial state ( = 413 MPa).

View Article and Find Full Text PDF

The paper presents an analysis of the impact of plastic deformation using hydrostatic extrusion (HE) on the structural, mechanical and functional properties of pure copper for use as electrodes in the process of electro discharge machining (EDM). As part of the research, copper was subjected to the HE process with the maximum cumulative true strain equal to ɛ = 3.89 obtained in 5 stages.

View Article and Find Full Text PDF

In this investigation, three different explosive materials have been used to improve the properties of titanium grade 2: ammonal, emulsion explosives, and plastic-bonded explosives. In order to establish the influence of explosive hardening on the properties of the treated alloys, tests were conducted, including microhardness testing, microstructure analysis, and tensile and corrosion tests. It has been found that it is possible to achieve a 40% increase in tensile strength using a plastic explosive (PBX) as an explosive material.

View Article and Find Full Text PDF

The study aimed to examine the effect of the hydrostatic extrusion (HE) process on the machinability of Ti grade 2 (Ti) in the turning process. After the deformation with true strain ɛ = 2.28, the microstructure was significantly refined to a grain size of 100 nm, resulting in an increase in the mechanical properties, UTS strength by 190%, YS yield strength by 230%Cutting forces for Ti in the initial state and after HE were analyzed at cutting depths a = 0.

View Article and Find Full Text PDF