Recently, shot noise has been shown to be an inherent part of all charge-transfer processes, leading to a practical limit of quantification of 2100 electrons (≈0.34 fC) [ 2020, 22, 170-177]. Attainable limits of quantification are made much larger by greater background currents and insufficient instrumentation, which restricts progress in sensing and single-entity applications.
View Article and Find Full Text PDFMetal nanoparticles have applications across a range of fields of science and industry. While there are numerous existing methods to facilitate their large-scale production, most face limitations, particularly in achieving reproducible processes and minimizing undesirable impurities. Common issues are varying particle sizes and aggregates with unfavorable spectral properties.
View Article and Find Full Text PDFNormal and heavy water are solvents most commonly used to study the isotope effect. The isotope effect of a solvent significantly influences the behavior of a single molecule in a solution, especially when there are interactions between the solvent and the solute. The influence of the isotope effect becomes more significant in DO/HO since the hydrogen bond in HO is slightly weaker than its counterpart (deuterium bond) in DO.
View Article and Find Full Text PDFChemical bond lengths and angles are characteristic structural parameters of a molecule. Similarly, the frequencies of the vibrational modes and the NMR chemical shifts are unique "chemical fingerprints" specific to a compound. These are the basic parameters describing newly obtained compounds and enabling their identification.
View Article and Find Full Text PDF2,5-Bis(6-methyl-2-benzoxazolyl)phenol () exhibits an ultrafast excited-state intramolecular proton transfer (ESIPT) when isolated in supersonic jets, whereas in condensed phases the phototautomerization is orders of magnitude slower. This unusual situation leads to nontypical photophysical characteristics: dual fluorescence is observed for in solution, whereas only a single emission, originating from the phototautomer, is detected for the ultracold isolated molecules. In order to understand the completely different behavior in the two regimes, detailed photophysical studies have been carried out.
View Article and Find Full Text PDFThe surface-enhanced Raman spectroscopy (SERS) detection limit strongly depends on the molecular structure, which we demonstrate for a family of tert-butyl-substituted porphycenes. Even though the investigated species present very similar photophysical properties, the ratio between the SERS signal and fluorescence background depends on the number of bulky tert-butyl groups. Moreover, the probability of single molecule detection systematically drops with the number of the moieties attached to the pyrrole ring.
View Article and Find Full Text PDFStrong coupling between vibrational transitions and a vacuum field of a cavity mode leads to the formation of vibrational polaritons. These hybrid light-matter states have been widely explored because of their potential to control chemical reactivity. However, the possibility of altering Raman scattering through the formation of vibrational polaritons has been rarely reported.
View Article and Find Full Text PDFTautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively.
View Article and Find Full Text PDFOptical near-field excitation of metallic nanostructures can be used to enhance photochemical reactions. The enhancement under visible light illumination is of particular interest because it can facilitate the use of sunlight to promote photocatalytic chemical and energy conversion. However, few studies have yet addressed optical near-field induced chemistry, in particular at the single-molecule level.
View Article and Find Full Text PDFQuantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM).
View Article and Find Full Text PDFHeat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations.
View Article and Find Full Text PDFSingle molecule surface-enhanced resonance Raman scattering (SERRS) spectra have been obtained for the parent porphycene (Pc-d0) and its deuterated isotopologue (Pc-d12), located on gold and silver nanoparticles. Equal populations of "hot spots" by the two isotopologues are observed for 1 : 1 mixtures in a higher concentration range of the single molecule regime (5 × 10(-9) M). For decreasing concentrations, hot spots are preferentially populated by undeuterated molecules.
View Article and Find Full Text PDFHere, we report the study of tautomerization within a single porphycene molecule adsorbed on a Cu(111) surface using low-temperature scanning tunneling microscopy (STM) at 5 K. While molecules are adsorbed on the surface exclusively in the thermodynamically stable trans tautomer after deposition, a voltage pulse from the STM can induce the unidirectional trans → cis and reversible cis ↔ cis tautomerization. From the voltage and current dependence of the tautomerization yield (rate), it is revealed that the process is induced by vibrational excitation via inelastic electron tunneling.
View Article and Find Full Text PDFAlthough plenty of functional nanomaterials are widely applied in science and technology, cost-efficient, controlled and reproducible fabrication of metallic nanostructures is a considerable challenge. Automated electrorefining by scanning electrochemical microscopy (SECM) provides an effective approach to circumvent some drawbacks of traditional homogeneous syntheses of nanoparticles, providing precise control over the amount, time and place of reactant delivery. The precursor is just a raw metal, which is the most economically viable source.
View Article and Find Full Text PDFThe procedure for identifying components in a mixture was developed and tested on Raman spectra of mixtures of solid amino acids, using the spectra of single amino acids as templates. The method is based on finding the optimum scaling coefficients of the linear combination of template spectra that minimize the Canberra distance between measured and reconstructed spectra. The Canberra distance, used here as a measure of dissimilarity between spectra, defines the non-convex objective function in the related optimization process.
View Article and Find Full Text PDFPhotochromism of monothiodibenzoylmethane has been studied in a number of environments at different temperatures. Direct laser irradiation of a sample located in the NMR magnet allowed in situ monitoring of the phototransformation products, determining their structure, and measuring the kinetics of the back reaction. These observations, along with the data obtained using electronic and vibrational spectroscopies for rare gas matrix-isolated samples, glasses, polymers, and solutions, as well as the results of quantum-chemical calculations, provide insight into the stepwise mechanism of the photochromism in β-thioxoketones.
View Article and Find Full Text PDFWe report the direct observation of intramolecular hydrogen atom transfer reactions (tautomerization) within a single porphycene molecule on a Cu(110) surface by scanning tunneling microscopy. It is found that the tautomerization can be induced via inelastic electron tunneling at 5 K. By measuring the bias-dependent tautomerization rate of isotope-substituted molecules, we can assign the scanning tunneling microscopy-induced tautomerization to the excitation of specific molecular vibrations.
View Article and Find Full Text PDFThree octaalkyl-substituted cyclo[4]naphthobipyrroles, studied in solution in the form of their sulfates, reveal absorption and magnetic circular dichroism (MCD) spectra very similar to those of the parent cyclo[8]pyrrole. A unique feature of these systems is a strong absorption in the near IR region. The analysis of MCD patterns based on a perimeter model reveals a hard-chromophore character of cyclo[4]naphthobipyrroles, i.
View Article and Find Full Text PDF