Cysteinyl-leukotrienes (cys-LTs) have well-characterized physiopathological roles in the development of inflammatory diseases. We have previously found that protein tyrosine phosphatase ε (PTPε) is a signaling partner of CysLTR, a high affinity receptor for leukotriene D4 (LTD). There are two major isoforms of PTPε, receptor-like (RPTPε) and cytoplasmic (cyt-)PTPε, both of which are encoded by the gene but from different promoters.
View Article and Find Full Text PDFPhosphorylation on tyrosine residues is recognized as an important mechanism for connecting extracellular stimuli to cellular events and defines a variety of physiologic responses downstream of G protein-coupled receptor (GPCR) activation. To date, few protein tyrosine phosphatases (PTPs) have been shown to associate with GPCRs, and little is known about their role in GPCR signaling. To discover potential cysteinyl-leukotriene receptor (CysLTR)-interacting proteins, we identified protein tyrosine phosphatase (PTP) in a yeast two-hybrid assay.
View Article and Find Full Text PDFIL-33 and cysteinyl leukotrienes (cysLTs) are key components of asthma pathogenesis, and both contribute to the initiation and maintenance of the type 2 inflammatory environment. However, little is known about the potential interactions between the two mediators. In this work, we aimed at studying the regulation of expression of the cysLT receptors CysLT1 and CysLT2 by IL-33 in human PBLs.
View Article and Find Full Text PDFBoth therapies for Graves' disease (GD), radioactive iodine (RAI) and antithyroid drugs (ATD), were reported to have specific immune effects. We aimed at investigating the effects of RAI therapy on cellular subsets involved in immune regulation. We conducted a thirty day follow-up prospective cohort study of adult patients.
View Article and Find Full Text PDFAccumulating evidence indicates that leukotriene B4 (LTB4) via its receptors BLT1 and/or BLT2 (BLTRs) could have an important role in regulating infection, tumour progression, inflammation, and autoimmune diseases. In the present study, we showed that LTB4 not only augments cytotoxicity by NK cells but also induces their migration. We found that approximately 30% of fresh NK cells express BLT1, 36% express BLT2, and 15% coexpress both receptors.
View Article and Find Full Text PDFIn order to determine the potential for allergen to modulate T cell expression of the CysLT1 receptor and responsiveness to leukotrienes, peripheral blood mononuclear cells from house dust mite-allergic or nonallergic individuals were incubated with D. pteronyssinus allergen (Der p). Baseline CysLT1 expression was similar in both groups of donors, but Der p significantly enhanced CysLT1 expression in CD4(+) and CD8(+) T cells of only allergic individuals and induced enhanced responsiveness of CD4(+) T cells to LTD4 in terms of calcium mobilisation.
View Article and Find Full Text PDFTh17 cells have been implicated in a number of inflammatory and autoimmune diseases. The phospholipid mediator platelet-activating factor (PAF) is found in increased concentrations in inflammatory lesions and has been shown to induce IL-6 production. We investigated whether PAF could affect the development of Th17 cells.
View Article and Find Full Text PDFThe constitutive commitment of neutrophils to apoptosis is a key process for the control and resolution of inflammation and it can be delayed by various inflammatory mediators including leukotriene B4 (LTB4). The mechanisms by which LTB4 contributes to neutrophil survival are still unclear and the present work aims at identifying intracellular pathways underlying this effect. Inhibition of human neutrophil apoptosis by LTB4 was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and by the specific MEK inhibitor PD98059.
View Article and Find Full Text PDFGlucocorticoids can down-regulate many inflammatory and immune responses and constitute a powerful therapeutic tool in a number of diseases. However, they have a somewhat paradoxical effect on neutrophils, in that they prolong their survival. Because leukotriene B(4) (LTB(4)) can also extend neutrophil survival, we proposed that glucocorticoids could prevent neutrophil apoptosis by up-regulating their expression of the high-affinity LTB(4) receptor (BLT1).
View Article and Find Full Text PDF