Publications by authors named "Sylvie Tuffery-Giraud"

Deposition of the exon junction complex (EJC) upstream of exon-exon junctions helps maintain transcriptome integrity by preventing spurious re-splicing events in already spliced mRNAs. Here we investigate the importance of EJC for the correct splicing of the 2.2-megabase-long human DMD pre-mRNA, which encodes dystrophin, an essential protein involved in cytoskeletal organization and cell signaling.

View Article and Find Full Text PDF

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia.

View Article and Find Full Text PDF

Aims: To estimate the effect of prophylactic angiotensin-converting enzyme inhibitors (ACEi) on survival in Duchenne muscular dystrophy (DMD).

Methods And Results: We analysed the data from the French multicentre DMD Heart Registry (ClinicalTrials.gov: NCT03443115).

View Article and Find Full Text PDF

The Duchenne muscular dystrophy (DMD) gene has a complex expression pattern regulated by multiple tissue-specific promoters and by alternative splicing (AS) of the resulting transcripts. Here, we used an RNAi-based approach coupled with DMD-targeted RNA-seq to identify RNA-binding proteins (RBPs) that regulate splicing of its skeletal muscle isoform (Dp427m) in a human muscular cell line. A total of 16 RBPs comprising the major regulators of muscle-specific splicing events were tested.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment.

Methods And Findings: We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years.

View Article and Find Full Text PDF

Dystrophinopathies are X-linked diseases, including Duchenne muscular dystrophy and Becker muscular dystrophy, due to DMD gene variants. In recent years, the application of new genetic technologies and the availability of new personalised drugs have influenced diagnostic genetic testing for dystrophinopathies. Therefore, these European best practice guidelines for genetic testing in dystrophinopathies have been produced to update previous guidelines published in 2010.

View Article and Find Full Text PDF

Background: Eteplirsen, the first FDA-approved RNA-modifying therapy for DMD, is applicable to ∼13% of patients with DMD. Because multiple exonic deletions are amenable to exon 51 skipping, the isoforms resulting from the various exon 51-skipped transcripts may vary in stability, function, and phenotype.

Objective/methods: We conducted a detailed review of dystrophinopathy published literature and unpublished databases to compile phenotypic features of patients with exon 51 "skip-equivalent" deletions.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene leading to the lack of dystrophin. Variability in the disease course suggests that other factors influence disease progression. With this study we aimed to identify genetic factors that may account for some of the variability in the clinical presentation.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe and rare X-linked neuromuscular childhood disorder that results in functional decline, loss of ambulation and early death due to cardiac or respiratory failure. The objective of this paper is to address different aspects of the current management of DMD in the Middle East, north Africa (MENA) region, and to gather experts' recommendations on how to optimally diagnose and treat patients suffering from this disease. A group of experts (neuromuscular medicine, neuropediatricians and geneticists) convened to discuss the diagnosis and management of DMD in the MENA region.

View Article and Find Full Text PDF

Interpretation of next-generation sequencing constitutes the main limitation of molecular diagnostics. In diagnosing myopathies and muscular dystrophies, another issue is efficiency in predicting the pathogenicity of variants identified in large genes, especially TTN; current in silico prediction tools show limitations in predicting and ranking the numerous variants of such genes. We propose a variant-prioritization tool, the MoBiDiCprioritization algorithm (MPA).

View Article and Find Full Text PDF

Mutation-induced exon skipping in the DMD gene can modulate the severity of the phenotype in patients with Duchenne or Becker Muscular Dystrophy. These alternative splicing events are most likely the result of changes in recruitment of splicing factors at cis-acting elements in the mutated DMD pre-mRNA. The identification of proteins involved can be achieved by an affinity purification procedure.

View Article and Find Full Text PDF

Splicing of pre-mRNA is a crucial regulatory stage in the pathway of gene expression controlled by multiple post- and co-transcriptional mechanisms. The large Duchenne muscular dystrophy gene encoding the protein dystrophin provides a striking example of the complexity of human pre-mRNAs. In this review, we summarize the current state of knowledge about canonical and non-canonical splicing in the DMD pre-mRNA, with a focus on mechanisms that take place in the full-length transcript isoform expressed in human skeletal muscle.

View Article and Find Full Text PDF

We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology.

View Article and Find Full Text PDF

The expressivity of Mendelian diseases can be influenced by factors independent from the pathogenic mutation: in Duchenne muscular dystrophy (DMD), for instance, age at loss of ambulation (LoA) varies between individuals whose DMD mutations all abolish dystrophin expression. This suggests the existence of trans-acting variants in modifier genes. Common single nucleotide polymorphisms (SNPs) in candidate genes (SPP1, encoding osteopontin, and LTBP4, encoding latent transforming growth factor β [TGFβ]-binding protein 4) have been established as DMD modifiers.

View Article and Find Full Text PDF

Familial renal glycosuria (FRG) is caused by mutations in the SLC5A2 gene, which codes for Na-glucose co-transporters 2 (SGLT2). The aim of this study was to analyze and identify the mutations in 16 patients from 8 families with FRG. All coding regions, including intron-exon boundaries, were analyzed using PCR followed by direct sequence analysis.

View Article and Find Full Text PDF

Background: Twenty-six HOGA1 mutations have been reported in primary hyperoxaluria (PH) type 3 (PH3) patients with c.700 + 5G>T accounting for about 50% of the total alleles. However, PH3 has never been described in Asians.

View Article and Find Full Text PDF

We investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1.

View Article and Find Full Text PDF

Purpose: Although 97-99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations.

Methods: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified.

View Article and Find Full Text PDF

Objective: Duchenne muscular dystrophy (DMD) is characterised by progressive muscle weakness. It has recently been reported that single nucleotide polymorphisms (SNPs) located in the SPP1 and LTBP4 loci can account for some of the inter-individual variability observed in the clinical disease course. The validation of genetic association in large independent cohorts is a key process for rare diseases in order to qualify prognostic biomarkers and stratify patients in clinical trials.

View Article and Find Full Text PDF

In-frame exon deletions of the Duchenne muscular dystrophy (DMD) gene produce internally truncated proteins that typically lead to Becker muscular dystrophy (BMD), a milder allelic disorder of DMD. We hypothesized that differences in the structure of mutant dystrophin may be responsible for the clinical heterogeneity observed in Becker patients and we studied four prevalent in-frame exon deletions, i.e.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease, caused by the absence of the dystrophin protein. Although many novel therapies are under development for DMD, there is currently no cure and affected individuals are often confined to a wheelchair by their teens and die in their twenties/thirties. DMD is a rare disease (prevalence <5/10,000).

View Article and Find Full Text PDF

Pathogenic complex genomic rearrangements are being increasingly characterized at the nucleotide level, providing unprecedented opportunities to evaluate the complexities of mutational mechanisms. Here, we report the molecular characterization of a complex duplication-triplication rearrangement involving exons 45-60 of the DMD gene. Inverted repeats facilitated this complex rearrangement, which shares common genomic organization with the recently described duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) events; specifically, a 690-kb region comprising DMD exons from 45 to 60 was duplicated in tandem, and another 46-kb segment containing exon 51 was inserted inversely in between them.

View Article and Find Full Text PDF

Molecular diagnosis of cystic fibrosis and cystic fibrosis transmembrane regulator (CFTR)-related disorders led to the worldwide identification of nearly 1,900 sequence variations in the CFTR gene that consist mainly of private point mutations and small insertions/deletions. Establishing their effect on the function of the encoded protein and therefore their involvement in the disease is still challenging and directly impacts genetic counseling. In this context, we built a decision tree following the international guidelines for the classification of variants of unknown clinical significance (VUCS) in the CFTR gene specifically focused on their consequences on splicing.

View Article and Find Full Text PDF