Publications by authors named "Sylvie Sousa"

The non-classical Human leukocyte antigen G (HLA-G) differs from classical HLA class I molecules by its low genetic diversity, a tissue-restricted expression, the existence of seven isoforms, and immuno-inhibitory functions. Most of the known functions of HLA-G concern the membrane-bound HLA-G1 and soluble HLA-G5 isoforms, which present the typical structure of classical HLA class I molecule: a heavy chain of three globular domains α1-α2-α3 non-covalently bound to β-2-microglobulin (B2M) and a peptide. Very little is known of the structural features and functions of other HLA-G isoforms or structural conformations other than B2M-associated HLA-G1 and HLA-G5.

View Article and Find Full Text PDF

HLA-G is a non-classical HLA class I molecule with tolerogenic properties and restricted tissue distribution. The expression of HLA-G can be induced by tumors thus providing an efficient way to escape the anti-tumoral immune response. Although lipid rafts regulate diverse immunological mechanisms their relationship with HLA-G remains controversial.

View Article and Find Full Text PDF

Vγ9Vδ2 T cells play a crucial role in the antitumoral immune response through cytokine production and cytotoxicity. Although the expression of the immunomodulatory molecule HLA-G has been found in diverse tumors, its impact on Vγ9Vδ2 T-cell functions remains unknown. Here we showed that soluble HLA-G inhibits Vγ9Vδ2 T-cell proliferation without inducing apoptosis.

View Article and Find Full Text PDF

Human leukocyte antigen-G (HLA-G) is a nonclassical tolerogenic molecule that can be expressed either as membrane bound (HLA-G1) or secreted (HLA-G5) isoforms. Upregulation of HLA-G1 or HLA-G5 expression by tumor cells constitutes an efficient way to escape from antitumoral immune responses. The inhibitory role of HLA-G1 on NK cell cytotoxicity is well characterized; however, that of the HLA-G5 isoform secreted by tumor is poorly understood.

View Article and Find Full Text PDF