Publications by authors named "Sylvie Sordello"

Cystobactamids have a unique oligoarylamide structure and exhibit broad-spectrum activity against Gram-negative and Gram-positive bacteria. In this study, the central α-amino acid of the cystobactamid scaffold was modified to address the relevance of stereochemistry, hydrogen bonding and polarity by 33 derivatives. As demonstrated by three matched molecular pairs, l-amino acids were preferred over d-amino acids.

View Article and Find Full Text PDF

Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails.

View Article and Find Full Text PDF

Corramycin is a novel zwitterionic antibacterial peptide isolated from a culture of the myxobacterium . Though Corramycin displayed a narrow spectrum and modest MICs against sensitive bacteria, its ADMET and physchem profile as well as its high tolerability in mice along with an outstanding in vivo efficacy in an septicemia mouse model were promising and prompted us to embark on an optimization program aiming at enlarging the spectrum and at increasing the antibacterial activities by modulating membrane permeability. Scanning the peptidic moiety by the Ala-scan strategy followed by key stabilization and introduction of groups such as a primary amine or siderophore allowed us to enlarge the spectrum and increase the overall developability profile.

View Article and Find Full Text PDF

Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of models that mimic clinical infection, translational challenges remain high.

View Article and Find Full Text PDF

The rise in antimicrobial resistance (AMR), and increase in treatment-refractory AMR infections, generates an urgent need to accelerate the discovery and development of novel anti-infectives. Preclinical animal models play a crucial role in assessing the efficacy of novel drugs, informing human dosing regimens and progressing drug candidates into the clinic. The Innovative Medicines Initiative-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium is establishing a validated and globally harmonized preclinical model to increase reproducibility and more reliably translate results from animals to humans.

View Article and Find Full Text PDF
Article Synopsis
  • Third-generation cephalosporin-resistant pathogens, particularly those with extended-spectrum β-lactamases (ESBLs), are critical threats to treatment and are targeted in developing new antibiotics.
  • Enmetazobactam, a new ESBL inhibitor combined with cefepime, has been studied for its effectiveness against serious Gram-negative infections, specifically in complicated urinary tract infections.
  • Research indicates that enmetazobactam can restore the efficacy of cefepime against resistant bacterial isolates, and establishes important pharmacokinetic-pharmacodynamic targets to enhance treatment effectiveness.
View Article and Find Full Text PDF

There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric -aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase.

View Article and Find Full Text PDF

The discovery of Streptomyces-produced streptomycin founded the age of tuberculosis therapy. Despite the subsequent development of a curative regimen for this disease, tuberculosis remains a worldwide problem, and the emergence of multidrug-resistant Mycobacterium tuberculosis has prioritized the need for new drugs. Here we show that new optimized derivatives from Streptomyces-derived griselimycin are highly active against M.

View Article and Find Full Text PDF

We investigated whether raising HDL-cholesterol levels with cholesteryl ester transfer protein (CETP) inhibition improves glucose homeostasis in dyslipidemic and insulin resistant hamsters. Compared with vehicle, torcetrapib 30 mg/kg/day (TOR) administered for 10 days significantly increased by ∼40% both HDL-cholesterol levels and 3H-tracer appearance in HDL after 3H-cholesterol labeled macrophages i.p.

View Article and Find Full Text PDF

Background: Acidic fibroblast growth factor (FGF-1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF-1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology.

Methods: In order to assess the potency of FGF-1 gene transfer for therapeutic angiogenesis in ischemic skeletal muscles displaying decreased gene expression levels and sustained impaired formation of collateral vessels and arterioles, we developed a model of PAD in hamsters with a background of hypercholesterolemia.

View Article and Find Full Text PDF

The hypothesis that tumor growth is angiogenesis-dependent has been documented by a considerable body of direct and indirect experimental data. Since the discovery of the vascular endothelial growth factor (VEGF), most attention has been focused on the VEGF system. Although fibroblast growth factors 1 and 2 (FGF-1 and FGF-2) can exert a strong angiogenic activity when they are supplied as a single pharmacological agent, their role in pathological angiogenesis in preclinical models remains controversial.

View Article and Find Full Text PDF

A key mechanism underlying physiological angiogenesis of the human endometrium is its ability to regenerate the vascular capillary network and to perform vascular remodeling (i.e., development of spiral arteries).

View Article and Find Full Text PDF