Publications by authors named "Sylvie Rocheleau"

We investigated individual toxicities of the nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT); 2-amino-4,6-dinitrotoluene (2-ADNT); 4-amino-2,6-dinitrotoluene (4-ADNT); and nitroglycerin (NG) on microbial activity in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support very high qualitative relative bioavailability for organic chemicals. Batches of SSL soil for basal respiration (BR) and substrate-induced respiration (SIR) assays were separately amended with individual EMs or acetone carrier control. Total microbial biomass carbon (biomass C) was determined from CO production increases after addition of 2500 mg/kg of glucose-water slurry to the soil.

View Article and Find Full Text PDF

The toxicity and toxicogenomics of selected anatase and rutile nanoparticles (NP) and bulk titanium dioxide (TiO2) particles were evaluated in the soil nematode Caenorhabditis elegans. Results indicated that bulk or nano-TiO2 particles were slightly toxic to soil nematode C. elegans, as measured by reproduction EC50 values ranging from 4 to 32 mg/L.

View Article and Find Full Text PDF

Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil.

View Article and Find Full Text PDF

The presence of energetic materials (used as explosives and propellants) at contaminated sites is a growing international issue, particularly with respect to military base closures and demilitarization policies. Improved understanding of the ecotoxicological effects of these materials is needed in order to accurately assess the potential exposure risks and impacts on the environment and its ecosystems. We studied the toxicity of the nitroaromatic energetic material 2,4-dinitrotoluene (2,4-DNT) on alfalfa (Medicago sativa L.

View Article and Find Full Text PDF

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L.

View Article and Find Full Text PDF

The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction.

View Article and Find Full Text PDF
Article Synopsis
  • The study assessed the toxic effects of various explosive compounds (TNT, TNB, 2,4-DNT, and 2,6-DNT) on terrestrial plants like alfalfa, Japanese millet, and perennial ryegrass in Sassafras sandy loam soil through seedling growth and biomass measurements.
  • After 13 weeks of weathering and aging the soils, the findings revealed that dinitrotoluenes were more harmful to the plants in freshly amended soils compared to TNT and TNB.
  • Aging and wetting-drying cycles altered toxicity levels, initially promoting growth at low concentrations before inhibiting it at higher levels, showcasing phenomena known as hormesis.
View Article and Find Full Text PDF

A new energetic substance hexanitrohexaazaisowurtzitane (or CL-20) was tested for its toxicities to various ecological receptors. CL-20 (epsilon-polymorph) was amended to soil or deionized water to construct concentration gradients. Results of Microtox (15-min contact) and 96-h algae growth inhibition tests indicate that CL-20 showed no adverse effects on the bioluminescence of marine bacteria Vibrio fischeri and the cell density of freshwater green algae Selenastrum capricornutum respectively, up to its water solubility (ca.

View Article and Find Full Text PDF