Throughout the HIV-1 replication cycle, complex host-pathogen interactions take place in the infected cell, leading to the production of new virions. The virus modulates the host cellular machinery in order to support its life cycle, while counteracting intracellular defense mechanisms. We investigated the dynamic host response to HIV-1 infection by systematically measuring transcriptomic, proteomic, and phosphoproteomic expression changes in infected and uninfected SupT1 CD4+ T cells at five time points of the viral replication process.
View Article and Find Full Text PDFDespite effective treatment, HIV can persist in latent reservoirs, which represent a major obstacle toward HIV eradication. Targeting and reactivating latent cells is challenging due to the heterogeneous nature of HIV-infected cells. Here, we used a primary model of HIV latency and single-cell RNA sequencing to characterize transcriptional heterogeneity during HIV latency and reactivation.
View Article and Find Full Text PDFCellular permissiveness to HIV infection is highly heterogeneous across individuals. Heterogeneity is also found across CD4+ T cells from the same individual, where only a fraction of cells gets infected. To explore the basis of permissiveness, we performed single-cell RNA-seq analysis of non-infected CD4+ T cells from high and low permissive individuals.
View Article and Find Full Text PDFTreatment of HIV-infected patients with IFN-α results in significant, but clinically insufficient, reductions of viremia. IFN induces the expression of several antiviral proteins including BST-2, which inhibits HIV by multiple mechanisms. The viral protein Vpu counteracts different effects of BST-2.
View Article and Find Full Text PDFSingle-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome.
View Article and Find Full Text PDFSingle-cell sequencing technologies, i.e., single cell analysis followed by deep sequencing investigate cellular heterogeneity in many biological settings.
View Article and Find Full Text PDFType-I interferons (IFNs) induce the expression of hundreds of cellular genes, some of which have direct antiviral activities. Although IFNs restrict different steps of HIV replication cycle, their dominant antiviral effect remains unclear. We first quantified the inhibition of HIV replication by IFN in tissue culture, using viruses with different tropism and growth kinetics.
View Article and Find Full Text PDFObjectives: HIV resistance to the integrase inhibitor raltegravir in treated patients is characterized by distinct resistance pathways. We hypothesize that differences in the in vivo dynamics of HIV resistance to raltegravir are due to the genetic context of the integrase present at baseline.
Patients And Methods: We studied four patients whose viruses evolved towards different resistance pathways.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein plays an important role during the early stages of the retroviral life cycle and therefore is an attractive target for therapeutic intervention. We immunized rabbits with HIV-1 IN protein and developed a combinatorial single-chain variable fragment (scFv) library against IN. Five different scFv antibodies with high binding activity and specificity for IN were identified.
View Article and Find Full Text PDFHIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells.
View Article and Find Full Text PDFHIV-1 Vif protein protects viral replication in non-permissive cells by inducing degradation of APOBEC3G via ubiquitination and proteasomal pathway, although new studies indicate a putative role in Vif's direct inhibition of APOBEC3G. APOBEC3G is member of a homologous family of proteins with cytidine deaminase activity expressed with characteristic tissue specificity, that in humans consist of APOBEC1, APOBEC2, APOBEC3A-H, APOBEC4 and the activation-induced deaminase (AID), a B lymphoid protein necessary for somatic hypermutation, gene conversion and class switch recombination. In this work we show that Vif can counteract AID's activity in E.
View Article and Find Full Text PDF