Publications by authors named "Sylvie Nozaradan"

Human movement synchronisation with moving objects strongly relies on visual input. However, auditory information also plays an important role, since real environments are intrinsically multimodal. We used electroencephalography (EEG) frequency tagging to investigate the selective neural processing and integration of visual and auditory information during motor tracking and tested the effects of spatial and temporal congruency between audiovisual modalities.

View Article and Find Full Text PDF

Periodicity is a fundamental property of biological systems, including human movement systems. Periodic movements support displacements of the body in the environment as well as interactions and communication between individuals. Here, we use electroencephalography (EEG) to investigate the neural tracking of visual periodic motion, and more specifically, the relevance of spatiotemporal information contained at and between their turning points.

View Article and Find Full Text PDF

Music listening often entails spontaneous perception and body movement to a periodic pulse-like meter. There is increasing evidence that this cross-cultural ability relates to neural processes that selectively enhance metric periodicities, even when these periodicities are not prominent in the acoustic stimulus. However, whether these neural processes emerge early in development remains largely unknown.

View Article and Find Full Text PDF

When listening to musical rhythm, humans can perceive and move to beat-like metrical pulses. Recently, it has been hypothesized that meter perception is related to brain activity responding to the acoustic fluctuation of the rhythmic input, with selective enhancement of the brain response elicited at meter-related frequencies. In the current study, electroencephalography (EEG) was recorded while younger (<35) and older (>60) adults listened to rhythmic patterns presented at two different tempi while intermittently performing a tapping task.

View Article and Find Full Text PDF

Human movements are spontaneously attracted to auditory rhythms, triggering an automatic activation of the motor system, a central phenomenon to music perception and production. Cortico-muscular coherence (CMC) in the theta, alpha, beta and gamma frequencies has been used as an index of the synchronisation between cortical motor regions and the muscles. Here we investigated how learning to produce a bimanual rhythmic pattern composed of low- and high-pitch sounds affects CMC in the beta frequency band.

View Article and Find Full Text PDF

The extent of high-level perceptual processing during sleep remains controversial. In wakefulness, perception of periodicities supports the emergence of high-order representations such as the pulse-like meter perceived while listening to music. Electroencephalography (EEG) frequency-tagged responses elicited at envelope frequencies of musical rhythms have been shown to provide a neural representation of rhythm processing.

View Article and Find Full Text PDF

Objective: Developmental dyslexia is a reading disorder that features difficulties in perceiving and tracking rhythmic regularities in auditory streams, such as speech and music. Studies on typical healthy participants have shown that power fluctuations of neural oscillations in beta band (15-25 Hz) reflect an essential mechanism for tracking rhythm or entrainment and relate to predictive timing and attentional processes. Here we investigated whether adults with dyslexia have atypical beta power fluctuation.

View Article and Find Full Text PDF

Humans perceive and spontaneously move to one or several levels of periodic pulses (a meter, for short) when listening to musical rhythm, even when the sensory input does not provide prominent periodic cues to their temporal location. Here, we review a multi-levelled framework to understanding how external rhythmic inputs are mapped onto internally represented metric pulses. This mapping is studied using an approach to quantify and directly compare representations of metric pulses in signals corresponding to sensory inputs, neural activity and behaviour (typically body movement).

View Article and Find Full Text PDF

Human movements often spontaneously fall into synchrony with auditory and visual environmental rhythms. Related behavioral studies have shown that motor responses are automatically and unintentionally coupled with external rhythmic stimuli. However, the neurophysiological processes underlying such motor entrainment remain largely unknown.

View Article and Find Full Text PDF

When listening to music, people often perceive and move along with a periodic meter. However, the dynamics of mapping between meter perception and the acoustic cues to meter periodicities in the sensory input remain largely unknown. To capture these dynamics, we recorded the electroencephalography while nonmusician and musician participants listened to nonrepeating rhythmic sequences, where acoustic cues to meter frequencies either gradually decreased (from regular to degraded) or increased (from degraded to regular).

View Article and Find Full Text PDF

Auditory steady-state evoked potentials (SS-EPs) are phase-locked neural responses to periodic stimuli, believed to reflect specific neural generators. As an objective measure, steady-state responses have been used in different clinical settings, including measuring hearing thresholds of normal and hearing-impaired subjects. Recent studies are in favor of recording these responses as a part of the cochlear implant (CI) device-fitting procedure.

View Article and Find Full Text PDF

People have a natural and intrinsic ability to coordinate body movements with rhythms surrounding them, known as sensorimotor synchronisation. This can be observed in daily environments, when dancing or singing along with music, or spontaneously walking, talking or applauding in synchrony with one another. However, the neurophysiological mechanisms underlying accurately synchronised movement with selected rhythms in the environment remain unclear.

View Article and Find Full Text PDF

Human rhythmic movements spontaneously synchronize with auditory rhythms at various frequency ratios. The emergence of more complex relationships-for instance, frequency ratios of 1:2 and 1:3-is enhanced by adding a congruent accentuation pattern (binary for 1:2 and ternary for 1:3), resulting in a 1:1 movement-accentuation relationship. However, this benefit of accentuation on movement synchronization appears to be stronger for the ternary pattern than for the binary pattern.

View Article and Find Full Text PDF

Humans coordinate their movements with one another in a range of everyday activities and skill domains. Optimal joint performance requires the continuous anticipation of and adaptation to each other's movements, especially when actions are spontaneous rather than pre-planned. Here we employ dual-EEG and frequency-tagging techniques to investigate how the neural tracking of self- and other-generated movements supports interpersonal coordination during improvised motion.

View Article and Find Full Text PDF

Many behaviors require choosing between conflicting options competing against each other in visuomotor areas. Such choices can benefit from top-down control processes engaging frontal areas in advance of conflict when it is anticipated. Yet, very little is known about how this proactive control system shapes the visuomotor competition.

View Article and Find Full Text PDF

Music makes us move, and using bass instruments to build the rhythmic foundations of music is especially effective at inducing people to dance to periodic pulse-like beats. Here, we show that this culturally widespread practice may exploit a neurophysiological mechanism whereby low-frequency sounds shape the neural representations of rhythmic input by boosting selective locking to the beat. Cortical activity was captured using electroencephalography (EEG) while participants listened to a regular rhythm or to a relatively complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.

View Article and Find Full Text PDF

The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain.

View Article and Find Full Text PDF

The combination of frequency-tagging with electroencephalography (EEG) has recently proved fruitful for understanding the perception of beat and meter in musical rhythm, a common behavior shared by humans of all cultures. EEG frequency-tagging allows the objective measurement of input-output transforms to investigate beat perception, its modulation by exogenous and endogenous factors, development, and neural basis. Recent doubt has been raised about the validity of comparing frequency-domain representations of auditory rhythmic stimuli and corresponding EEG responses, assuming that it implies a one-to-one mapping between the envelope of the rhythmic input and the neural output, and that it neglects the sensitivity of frequency-domain representations to acoustic features making up the rhythms.

View Article and Find Full Text PDF

How specific brain networks track rhythmic sensory input over time remains a challenge in neuroimaging work. Here we show that subcortical areas, namely the basal ganglia and the cerebellum, specifically contribute to the neural tracking of rhythm. We tested patients with focal lesions in either of these areas and healthy controls by means of electroencephalography (EEG) while they listened to rhythmic sequences known to induce selective neural tracking at a frequency corresponding to the most-often perceived pulse-like beat.

View Article and Find Full Text PDF

The human auditory system presents a remarkable ability to detect rapid changes in fast, continuous acoustic sequences, as best illustrated in speech and music. However, the neural processing of rapid auditory contrast remains largely unclear, probably due to the lack of methods to objectively dissociate the response components specifically related to the contrast from the other components in response to the sequence of fast continuous sounds. To overcome this issue, we tested a novel use of the frequency-tagging approach allowing contrast-specific neural responses to be tracked based on their expected frequencies.

View Article and Find Full Text PDF

Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl's gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices.

View Article and Find Full Text PDF

Movement to a steady beat has been widely studied as a model of alignment of motor outputs on sensory inputs. However, how the encoding of sensory inputs is shaped during synchronized movements along the sensory pathway remains unknown. To investigate this, we simultaneously recorded brainstem and cortical electro-encephalographic activity while participants listened to periodic amplitude-modulated tones.

View Article and Find Full Text PDF

Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age.

View Article and Find Full Text PDF