Recent research has promoted considerable interest in the potential health benefits of the new generation of probiotics. Despite the abundance of probiotic supplements, their adhesion and thereby colonization in the intestinal tract of the host, a determining factor of probiotic efficacy, remains questionable. Indeed, the gastrointestinal tract, a multi-component and complex system, obscures the comprehensive understanding of the probiotic adhesion mechanism.
View Article and Find Full Text PDFPea albumins are promising for their nutritional, biological, and techno-functional properties. However, this fraction is usually discarded in the industry due to its low protein content compared to globulin fraction and the presence of some anti-nutritional compounds. In the present study, we used an alternative method of pea protein extraction based on alkaline solubilization/isoelectric precipitation in which the reduction of pH was achieved by lactic acid fermentation using specific starters instead of mineral acids.
View Article and Find Full Text PDFBackground: Poly(lactic acid) (PLA) has limited uses for moist and acidic foods due to its barrier properties, which are fairly poor, and its sensitivity to moisture.
Results: Deposition of thin coatings based on natural biopolymers (gelatin) incorporating bioactive agents has allowed the development of active packaging materials while maintaining their biodegradability and their food contact material ability. Gelatin coatings containing two phenolic acids (tannic and gallic) have been tested.
Hydrocolloid-based films containing natural phenolic antioxidants (gallic and trans-cinnamic acids at 5% w/wt of polymers) embedded in a gelatin/chitosan matrix were designed as sustainable active packaging. This work deals with characterizing the release mechanisms of the phenolic acids from the films immersed into food simulants (sugar or polyol solutions) having different water activities and viscosities. The films containing gallic acid exhibited higher antioxidant activities than the trans-cinnamic acid films.
View Article and Find Full Text PDFBackground And Aims: Optimization of osmotic dehydration in different plant cells has been investigated through the variation of parameters such as the nature of the sugar used, the concentration of osmotic solutions and the processing time. In micro-organisms such as the yeast, Saccharomyces cerevisiae, the exposure of a cell to a slow increase in osmotic pressure preserves cell viability after rehydration, while sudden dehydration involves a lower rate of cell viability, which could be due to membrane vesiculation. The aim of this work is to study cytoplasmic vesicle formation in onion epidermal cells (Allium cepa) as a function of the kinetics of osmotic pressure variation in the external medium.
View Article and Find Full Text PDFThe effect of a rapid temperature increase on the volume of different types of cells was investigated. Experiments were carried out using continuous microscopic image analysis. Volume variation of yeast cells, yeast spheroplasts and human leukaemia cells was measured during the transient phase after a thermal shift.
View Article and Find Full Text PDF