Publications by authors named "Sylvie Mainot"

Hepatocyte transplantation has become an alternative to orthotopic liver transplantation for the treatment of liver metabolic diseases. However, there is an increasing lack of donor organs and isolated mature hepatocytes are difficult to manipulate and cannot be expanded in vitro. It is therefore necessary to find alternative sources of hepatocytes, and different approaches to evaluate the therapeutic potential of stem cells of different origins are being developed.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a novel method to differentiate human embryonic stem cells (hESCs) into functional hepatocytes, which could be used for cell therapy instead of liver transplants.
  • This process involves creating a homogenous population of endoderm cells, followed by inducing these cells to mature into hepatic progenitors and finally into mature hepatocytes that express specific liver-related markers.
  • The matured cells not only showed essential hepatic functions but also successfully integrated into mouse liver models, indicating the potential for clinical applications in treating liver diseases.
View Article and Find Full Text PDF

Unlabelled: The success of hepatocyte transplantation has been limited by the low efficiency of transplanted cell integration into liver parenchyma. Human fetal hepatic progenitor cells (hepatoblasts) engraft more effectively than adult hepatocytes in mouse livers. However, the signals required for their integration are not yet fully understood.

View Article and Find Full Text PDF

Transplantation of hepatocytes, whether genetically modified or not, has become an alternative to orthotopic liver transplantation for the treatment of patients with metabolic disease. However, more than ten years after the first clinical trial of ex vivo gene therapy to treat patients with Familial Hypercholesterolemia, there are still a number of impediments to these approaches. Numerous animal models are still being developed on the one hand to improve hepatocyte integration within hepatic parenchyma and function, and on the other hand to develop vectors that drive long-term transgene expression in situ.

View Article and Find Full Text PDF

Unlabelled: The feasibility of ex vivo gene therapy as an alternative to liver transplantation for the treatment of liver metabolic diseases needs to be analyzed in large animal models. This approach requires appropriate gene transfer vectors and effective hepatocyte engraftment. Lentiviral vectors have the ability to transduce nondividing differentiated cells, such as hepatocytes, and portal vein occlusion increases hepatocyte engraftment.

View Article and Find Full Text PDF

Background/aims: Lentivirus-mediated ex vivo gene therapy is becoming a promising approach for the treatment of liver metabolic disorders. However, the feasibility of this approach needs to be studied in large animal models. The purpose of this study was to evaluate the efficacy of ex vivo gene transfer into Macaca hepatocytes with two different HIV-1 derived lentiviral vectors.

View Article and Find Full Text PDF

Transplantation of genetically modified or unmodified hepatocytes appears to be a less invasive alternative to liver transplantation. However, clinical trials performed for the treatment of metabolic deficiencies resulted in a partial and transitory correction due to an insufficient number of engrafted and functional hepatocytes. In vitro, adult hepatocytes do not proliferate and the lack of organ donors limits their availability.

View Article and Find Full Text PDF

Transplantation of hepatocytes is a promising alternative to liver transplantation for the treatment of severe liver diseases. However, this approach is hampered by the shortage of donor organs and intrinsic limitations of adult hepatocytes. To investigate whether most of the hurdles faced with adult hepatocytes could be surmounted by the use of human fetal hepatoblasts, we have developed a method to isolate, transduce, and cryopreserve hepatoblasts from human livers at an early stage of development (11-13 weeks of gestation).

View Article and Find Full Text PDF