Publications by authors named "Sylvie Lachkar"

Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations.

View Article and Find Full Text PDF

Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody.

View Article and Find Full Text PDF
Article Synopsis
  • In humans, higher levels of ACBP/DBI are associated with increased BMI, age, and future cardiovascular issues, indicating it might serve as a biological aging biomarker.
  • Studies in mice suggest that neutralizing ACBP/DBI can reduce heart aging effects, highlighting its potential importance in understanding cardiovascular health in aging.
View Article and Find Full Text PDF

Microtubule dynamics is regulated by various cellular proteins and perturbed by small-molecule compounds. To what extent the mechanism of the former resembles that of the latter is an open question. We report here structures of tubulin bound to the PN2-3 domain of CPAP, a protein controlling the length of the centrioles.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC.

View Article and Find Full Text PDF

Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with those elicited by 48 h fasting in mice, revealing convergent alterations in the plasma and the heart metabolome. Aspirin caused a transient reduction of general protein acetylation in blood leukocytes, accompanied by the induction of autophagy.

View Article and Find Full Text PDF

The pharmacological targeting of polyamine metabolism is currently under the spotlight for its potential in the prevention and treatment of several age-associated disorders. Here, we report the finding that triethylenetetramine dihydrochloride (TETA), a copper-chelator agent that can be safely administered to patients for the long-term treatment of Wilson disease, exerts therapeutic benefits in animals challenged with hypercaloric dietary regimens. TETA reduced obesity induced by high-fat diet, excessive sucrose intake, or leptin deficiency, as it reduced glucose intolerance and hepatosteatosis, but induced autophagy.

View Article and Find Full Text PDF

Mutations affecting exon 9 of the CALR gene lead to the generation of a C-terminally modified calreticulin (CALR) protein that lacks the KDEL endoplasmic reticulum (ER) retention signal and consequently mislocalizes outside of the ER where it activates the thrombopoietin receptor in a cell-autonomous fashion, thus driving myeloproliferative diseases. Here, we used the retention using selective hooks (RUSH) assay to monitor the trafficking of CALR. We found that exon-9-mutated CALR was released from cells in response to the biotin-mediated detachment from its ER-localized hook, in vitro and in vivo.

View Article and Find Full Text PDF

Caloric restriction mimetics (CRMs) are natural or synthetic compounds that mimic the health-promoting and longevity-extending effects of caloric restriction. CRMs provoke the deacetylation of cellular proteins coupled to an increase in autophagic flux in the absence of toxicity. Here, we report the identification of a novel candidate CRM, namely 3,4-dimethoxychalcone (3,4-DC), among a library of polyphenols.

View Article and Find Full Text PDF

The retention using selective hooks (RUSH) system allows to retain a target protein fused to green fluorescent protein (GFP) and a streptavidin-binding peptide (SBP) due to the interaction with a molar excess of streptavidin molecules ("hooks") targeted to selected subcellular compartments. Supplementation of biotin competitively disrupts the interaction between the SBP moiety and streptavidin, liberating the chimeric target protein from its hooks, while addition of avidin causes the removal of biotin from the system and reestablishes the interaction. Based on this principle, we engineered two chimeric proteins involved in autophagy, namely microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B, best known as LC3) and sequestosome-1 (SQSTM1, best known as p62) to move them as SBP-GFP-LC3 and p62-SBP-GFP at will between the cytosol and two different organelles, the endoplasmic reticulum (ER) and the Golgi apparatus.

View Article and Find Full Text PDF

The retention using selective hooks (RUSH) system allows to withhold a fluorescent biosensor such as green fluorescent protein (GFP) fused to a streptavidin-binding peptide (SBP) by an excess of streptavidin molecules that are addressed to different subcellular localizations. Addition of biotin competitively disrupts this interaction, liberating the biosensor from its hook. We constructed a human cell line co-expressing soluble secretory-SBP-GFP (ss-SBP-GFP) and streptavidin within the endoplasmic reticulum (ER) lumen and then used this system to screen a compound library for inhibitors of the biotin-induced release of ss-SBP-GFP via the conventional Golgi-dependent protein secretion pathway into the culture supernatant.

View Article and Find Full Text PDF

The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs).

View Article and Find Full Text PDF

Beclin 1 (BECN1) is a multifunctional protein that activates the pro-autophagic class III phosphatidylinositol 3-kinase (PIK3C3, best known as VPS34), yet also interacts with multiple negative regulators. Here we report that BECN1 interacts with inhibitor of growth family member 4 (ING4), a tumor suppressor protein that is best known for its capacity to interact with the tumor suppressor protein p53 (TP53) and the acetyltransferase E1A binding protein p300 (EP300). Removal of TP53 or EP300 did not affect the BECN1/ING4 interaction, which however was lost upon culture of cells in autophagy-inducing, nutrient free conditions.

View Article and Find Full Text PDF

The translocation of the protein high mobility group box 1 (HMGB1) from the nucleus to the cytoplasm and its secretion or passive release through the permeabilized plasma membrane, constitutes a major cellular danger signal. Extracellular HMGB1 can interact with pattern recognition receptors to stimulate pro-inflammatory and immunostimulatory pathways. Here, we developed a screening assay to identify pharmacological agents endowed with HMGB1 releasing properties.

View Article and Find Full Text PDF

Phase II clinical trials indicate that the combination of cysteamine plus epigallocatechin gallate (EGCG) is effective against cystic fibrosis in patients bearing the most frequent etiological mutation (CFTRΔF508). Here, we investigated the interaction between both agents on cultured respiratory epithelia cells from normal and CFTRΔF508-mutated donors. We observed that the combination of both agents affected metabolic circuits (and in particular the tricarboxylic acid cycle) in a unique way and that cysteamine plus EGCG reduced cytoplasmic protein acetylation more than each of the 2 components alone.

View Article and Find Full Text PDF

Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemotherapy in vivo.

View Article and Find Full Text PDF

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import.

View Article and Find Full Text PDF

A chemical screen designed to identify novel inducers of autophagy led to the discovery that signal transducer and activator of transcription 3 (STAT3) inhibitors can potently stimulate the autophagic flux. Although STAT3 is best known as a pro-inflammatory and oncogenic transcription factor, mechanistic analyses revealed that autophagy is regulated by the cytoplasmic, not nuclear, pool of STAT3. Cytoplasmic STAT3 normally interacts with the eukaryotic translation initiation factor 2, subunit 1α, 35kDa (EIF2S1/eIF2α) kinase 2/protein kinase, RNA-activated (EIF2AK2/PKR), a sensor of double-stranded RNA.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that inhibiting STAT3 significantly boosts autophagy, both in lab settings and in living organisms.
  • Overexpression of different STAT3 variants hampers autophagy during starvation, showing that STAT3 plays a crucial role in regulating this process.
  • The study reveals that STAT3 interacts with PKR, and inhibiting STAT3 disrupts this interaction, promoting autophagy through PKR activation and eIF2α phosphorylation.
View Article and Find Full Text PDF

During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis.

View Article and Find Full Text PDF

General (macro)autophagy and the activation of NFκB constitute prominent responses to a large array of intracellular and extracellular stress conditions. The depletion of any of the three subunits of the inhibitor of NFκB (IκB) kinase (IKKα, IKKβ, IKKγ/NEMO), each of which is essential for the canonical NFκB activation pathway, limits autophagy induction by physiological or pharmacological triggers, while constitutive active IKK subunits suffice to stimulate autophagy. The activation of IKK usually relies on TGFβ-activated kinase 1 (TAK1), which is also necessary for the optimal induction of autophagy in multiple settings.

View Article and Find Full Text PDF

Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1.

View Article and Find Full Text PDF

Chronic acquired neuropathies of unknown origin are classified as chronic inflammatory demyelinating polyneuropathies (CIDP) and chronic idiopathic axonal polyneuropathies (CIAP). The diagnosis can be very difficult, although it has important therapeutic implications since CIDP can be improved by immunomodulating treatment. The aim of this study was to examine the possible abnormalities of nodal and paranodal regions in these two types of neuropathies.

View Article and Find Full Text PDF

In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins.

View Article and Find Full Text PDF

Microtubules are cytoskeletal components involved in multiple cell functions such as mitosis, motility, or intracellular traffic. In vivo, these polymers made of alphabeta-tubulin nucleate mostly from the centrosome to establish the interphasic microtubule network or, during mitosis, the mitotic spindle. Centrosomal P4.

View Article and Find Full Text PDF