Publications by authors named "Sylvie Kemleu"

Background: Asymptomatic carriage of infected red blood cells (iRBCs) can be prevalent in communities regardless of transmission patterns and can occur with infection of different Plasmodium species. Clinical immunity dampens the inflammatory responses leading to disease symptoms in malaria. The aim of this study was to define the immunological correlates of asymptomatic carriage of Plasmodium falciparum in a highly exposed population.

View Article and Find Full Text PDF

Malaria remains a major public health problem worldwide, with eradication efforts thwarted by drug and insecticide resistance and the lack of a broadly effective malaria vaccine. In continuously exposed communities, polyclonal infections are thought to reduce the risk of severe disease and promote the establishment of asymptomatic infections. We sought to investigate the relationship between the complexity of infection and underlying host adaptive immune responses in an area with a high prevalence of asymptomatic parasitaemia in Cameroon.

View Article and Find Full Text PDF

Asymptomatic malarial parasitemia is highly prevalent in Plasmodium falciparum endemic areas and often associated with increased prevalence of mild to moderate anemia. The aim of this study was to assess the prevalence of anemia during asymptomatic malaria parasitemia and its interplay with persistent infection in highly exposed individuals. A household-based longitudinal survey was undertaken in a malaria hyperendemic area in Cameroon using multiplex nested polymerase chain reaction to detect plasmodial infections.

View Article and Find Full Text PDF

Presence of mature gametocyte forms of malaria parasites in peripheral blood is a key requirement for malaria transmission. Yet, studies conducted in most malaria transmission zones report the absence of gametocyte in the majority of patients. We therefore sought to determine the risk factors of both all-stage and mature gametocyte carriage in an area with high stable transmission of Plasmodium falciparum in Cameroon.

View Article and Find Full Text PDF

Highly sensitive and field deployable molecular diagnostic tools are critically needed for detecting submicroscopic, yet transmissible levels of malaria parasites prevalent in malaria endemic countries worldwide. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and evaluated in comparison with thick blood smear microscopy, an antigen-based rapid diagnostic test (RDT), and an in-house RT-PCR targeting the same RT-LAMP transcript. The optimized assay detected Plasmodium falciparum infections in as little as 0.

View Article and Find Full Text PDF