Publications by authors named "Sylvie Guichard"

Anemia in patients with sickle cell disease (SCD) increases 2,3-diphosphoglycerate (2,3-DPG), decreasing hemoglobin-oxygen (HbO) affinity to improve oxygen offloading and promote hemoglobin polymerization (sickling) of red blood cells (RBCs). We report the discovery of FT-4202, an investigational, selective pyruvate kinase type-R (PKR) activator with a multimodal mechanism of action and potential to increase ATP and decrease 2,3-DPG, resulting in increased HbO affinity, decreased Hb polymerization, and improved RBC health. FT-4202 was identified via structure-enabled lead optimization medicinal chemistry using X-ray crystallography, molecular modeling, and thermal shift assays.

View Article and Find Full Text PDF

Background: Patients with triple-negative breast cancer (TNBC) expressing the androgen receptor (AR) respond poorly to neoadjuvant chemotherapy, although AR antagonists have shown promising clinical activity, suggesting these tumors are AR-dependent. cAMP responsive element binding protein (CREB)-binding protein (CBP) and p300 are transcriptional co-activators for the AR, a key driver of AR+ breast and prostate cancer, and may provide a novel therapeutic target in AR+ TNBC.

Objectives: The aim of this study was to determine the therapeutic potential of FT-6876, a new CBP/p300 bromodomain inhibitor, in breast cancer models with a range of AR levels in vitro and in vivo.

View Article and Find Full Text PDF

Background: Olutasidenib (FT-2102) is a potent, selective, oral, small-molecule inhibitor of mutant isocitrate dehydrogenase 1 (IDH1). The aims for phase 1 of this phase 1/2 study were to assess the safety, pharmacokinetics, pharmacodynamics, and clinical activity of olutasidenib, as monotherapy or in combination with azacitidine, in patients with acute myeloid leukaemia or myelodysplastic syndrome, harbouring mutant IDH1.

Methods: In this phase 1/2, multicentre, open-label clinical trial, we enrolled patients aged 18 years or older with acute myeloid leukaemia or intermediate, high, or very high risk myelodysplastic syndrome harbouring mutant IDH1 at 18 study sites in the USA, Australia, France, and Spain.

View Article and Find Full Text PDF

Background: Olutasidenib (FT-2102) is a highly potent, orally bioavailable, brain-penetrant and selective inhibitor of mutant isocitrate dehydrogenase 1 (IDH1). The aim of the study was to determine the safety and clinical activity of olutasidenib in patients with relapsed/refractory gliomas harboring an IDH1R132X mutation.

Methods: This was an open-label, multicenter, nonrandomized, phase Ib/II clinical trial.

View Article and Find Full Text PDF

ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit.

View Article and Find Full Text PDF

Etavopivat is an investigational, oral, small molecule activator of erythrocyte pyruvate kinase (PKR) in development for the treatment of sickle cell disease (SCD) and other hemoglobinopathies. PKR activation is proposed to ameliorate the sickling of SCD red blood cells (RBCs) through multiple mechanisms, including reduction of 2,3-diphosphoglycerate (2,3-DPG), which consequently increases hemoglobin (Hb)-oxygen affinity; increased binding of oxygen reduces sickle hemoglobin polymerization and sickling. In addition, PKR activation increases adenosine triphosphate (ATP) produced via glycolytic flux, which helps preserve membrane integrity and RBC deformability.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) results from an abnormal sickle hemoglobin (HbS). HbS polymerizes upon deoxygenation, resulting in red blood cell (RBC) sickling and membrane damage that cause vaso-occlusions and hemolysis. Sickle RBCs contain less adenosine triphosphate and more 2,3-diphosphoglycerate than normal RBCs, which allosterically reduces hemoglobin (Hb) oxygen (O2) affinity (ie, increases the partial pressure of oxygen at which hemoglobin is 50% saturated with oxygen [P50]), potentiating HbS polymerization.

View Article and Find Full Text PDF

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma driven by mutations in or platelet-derived growth factor α (α). Although first-line treatment, imatinib, has revolutionized GIST treatment, drug resistance due to acquisition of secondary /α mutations develops in a majority of patients. Second- and third-line treatments, sunitinib and regorafenib, lack activity against a plethora of mutations in KIT/PDGFRα in GIST, with median time to disease progression of 4 to 6 months and inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) causing high-grade hypertension.

View Article and Find Full Text PDF

Purpose: The emergence of secondary mutations is a cause of resistance to current KIT inhibitors used in the treatment of patients with gastrointestinal stromal tumors (GIST). AZD3229 is a selective inhibitor of wild-type KIT and a wide spectrum of primary and secondary mutations seen in patients with GIST. The objective of this analysis is to establish the pharmacokinetic-pharmacodynamic (PKPD) relationship of AZD3229 in a range of mouse GIST tumor models harboring primary and secondary KIT mutations, and to benchmark AZD3229 against other KIT inhibitors.

View Article and Find Full Text PDF

Purpose: To determine whether inhibition of mTOR kinase-mediated signaling represents a valid therapeutic approach for chronic lymphocytic leukemia (CLL).

Experimental Design: Stratification of mTOR activity was carried out in patients with primary CLL samples and an aggressive CLL-like mouse model. The potency of dual mTOR inhibitor AZD8055 to induce apoptosis in primary CLL cells was assessed in the presence/absence of B-cell receptor (BCR) ligation.

View Article and Find Full Text PDF
Article Synopsis
  • ATR is an essential kinase involved in repairing DNA damage, particularly during replication stress and double-strand breaks.
  • The development of AZD6738, a selective ATR inhibitor, enhances its effectiveness by improving solubility and reducing interactions with liver enzymes.
  • AZD6738 is undergoing phase I/II clinical trials as a potential anticancer treatment, demonstrating favorable dosing characteristics and effective biological activity.
View Article and Find Full Text PDF

While the treatment of gastrointestinal stromal tumors (GISTs) has been revolutionized by the application of targeted tyrosine kinase inhibitors capable of inhibiting KIT-driven proliferation, diverse mutations to this kinase drive resistance to established therapies. Here we describe the identification of potent pan-KIT mutant kinase inhibitors that can be dosed without being limited by the tolerability issues seen with multitargeted agents. This effort focused on identification and optimization of an existing kinase scaffold through the use of structure-based design.

View Article and Find Full Text PDF

Cyclin-dependent kinase (CDK) 12 knockdown via siRNA decreases the transcription of DNA-damage-response genes and sensitizes BRCA wild-type cells to poly(ADP-ribose) polymerase (PARP) inhibition. To recapitulate this effect with a small molecule, we sought a potent, selective CDK12 inhibitor. Crystal structures and modeling informed hybridization between dinaciclib and SR-3029, resulting in lead compound 5 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-ethyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol].

View Article and Find Full Text PDF

Background And Purpose: AZD8055 is a potent orally available mTOR kinase inhibitor with in vitro and in vivo antitumour activity against a range of tumour types. Preclinical studies showed that AZD8055 induced a dose-dependent pharmacodynamic effect in xenograft models in vivo, but a lack of understanding of the relative contributions of the maximum inhibition of the biomarkers and the duration of inhibition to the antitumour effect, limited the rational design of experiments to optimize the dose and schedules of treatment.

Experimental Approach: In this study, a mathematical modelling approach was developed to relate pharmacodynamics and antitumour activity using preclinical data generated in mice bearing U87-MG xenografts.

View Article and Find Full Text PDF

mTOR is an atypical serine threonine kinase involved in regulating major cellular functions, such as nutrients sensing, growth, and proliferation. mTOR is part of the multiprotein complexes mTORC1 and mTORC2, which have been shown to play critical yet functionally distinct roles in the regulation of cellular processes. Current clinical mTOR inhibitors only inhibit the mTORC1 complex and are derivatives of the macrolide rapamycin (rapalogs).

View Article and Find Full Text PDF

The dual-specificity tyrosine-phosphorylation-regulated kinase, DYRK1B, is expressed de novo during myogenesis, amplified or mutated in certain cancers and mutated in familial cases of metabolic syndrome. DYRK1B is activated by cis auto-phosphorylation on tyrosine-273 (Y273) within the activation loop during translation but few other DYRK1B phosphorylation sites have been characterised to date. Here, we demonstrate that DYRK1B also undergoes trans-autophosphorylation on serine-421 (S421) in vitro and in cells and that this site contributes to DYRK1B kinase activity.

View Article and Find Full Text PDF

Potent and selective inhibitors of Dyrk1B kinase were developed to explore the hypothesis, based on siRNA studies, that Dyrk1B may be a resistance mechanism in cells undergoing a stress response.

View Article and Find Full Text PDF

Introduction: Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in estrogen receptor α (ER)-positive breast cancer is associated with reduced ER expression and activity, luminal B subtype, and poor outcome. Phosphatase and tensin homolog (PTEN), a negative regulator of this pathway, is typically lost in ER-negative breast cancer. We set out to clarify the role of reduced PTEN levels in endocrine resistance, and to explore the combination of newly developed PI3K downstream kinase inhibitors to overcome this resistance.

View Article and Find Full Text PDF

Despite promising preclinical results with mTOR kinase inhibitors in multiple myeloma, resistance to these drugs may arise via feedback activation loops. This concern is especially true for insulin-like growth factor 1 receptor (IGF1R), because IGF1R signaling is downregulated by multiple AKT and mTOR feedback mechanisms. We have tested this hypothesis in multiple myeloma using the novel selective mTOR kinase inhibitor AZD8055.

View Article and Find Full Text PDF

Aberrant activation of multiple signaling pathways is common in acute myelogenous leukemia (AML) cells, which can be linked to a poor prognosis for patients with this disease. Previous research with mTOR or MEK inhibitors revealed cytostatic, rather than cytotoxic, effects in in vitro and in vivo AML models. We evaluated the combination effect of the mTOR inhibitor AZD8055 and the MEK inhibitor selumetinib on human AML cell lines and primary AML samples.

View Article and Find Full Text PDF

Introduction: Upregulation of PI3K/Akt/mTOR signalling in endocrine-resistant breast cancer (BC) has identified mTOR as an attractive target alongside anti-hormones to control resistance. RAD001 (everolimus/Afinitor®), an allosteric mTOR inhibitor, is proving valuable in this setting; however, some patients are inherently refractory or relapse during treatment requiring alternative strategies. Here we evaluate the potential for novel dual mTORC1/2 mTOR kinase inhibitors, exemplified by AZD8055, by comparison with RAD001 in ER + endocrine resistant BC cells.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) protein kinase coordinates responses to nutrients and growth factors and is an anti-cancer drug target. To anticipate how cells will respond and adapt to chronic mTOR complex (mTORC)1 and mTORC2 inhibition, we have generated SW620 colon cancer cells with acquired resistance to the ATP-competitive mTOR kinase inhibitor AZD8055 (SW620:8055R). AZD8055 inhibited mTORC1 and mTORC2 signalling and caused a switch from cap-dependent to internal ribosome entry site (IRES)-dependent translation in parental SW620 cells.

View Article and Find Full Text PDF

Purpose: The mTOR kinase inhibitor AZD8055 inhibits both mTORC1 and mTORC2 leading to disruption of glucose metabolism and proliferation pathways. This study assessed the impact of single and multiple doses of AZD8055 on the uptake of the glucose metabolism marker 2-deoxy-2-[(18) F]fluoro-D-glucose ([(18) F]FDG) and the proliferation marker 3'-deoxy-3'-[(18) F]fluorothymidine ([(18) F]FLT) in U87-MG glioma xenografts.

Procedures: Mice bearing U87-MG tumours received either vehicle or AZD8055 (20 mg/kg) once daily p.

View Article and Find Full Text PDF

DYRK1B (dual-specificity tyrosine phosphorylation-regulated kinase 1B) is amplified in certain cancers and may be an oncogene; however, our knowledge of DYRK1B has been limited by the lack of selective inhibitors. In the present study we describe AZ191, a potent small molecule inhibitor that selectively inhibits DYRK1B in vitro and in cells. CCND1 (cyclin D1), a key regulator of the mammalian G1-S-phase transition, is phosphorylated on Thr(286) by GSK3β (glycogen synthase kinase 3β) to promote its degradation.

View Article and Find Full Text PDF

The majority of human cancers harbour mutations promoting activation of the Akt protein kinase, and Akt inhibitors are being evaluated in clinical trials. An important question concerns the understanding of the innate mechanisms that confer resistance of tumour cells to Akt inhibitors. SGK (serum- and glucocorticoid-regulated kinase) is closely related to Akt and controlled by identical upstream regulators {PI3K (phosphoinositide 3-kinase), PDK1 (phosphoinositide-dependent kinase 1) and mTORC2 [mTOR (mammalian target of rapamycin) complex 2]}.

View Article and Find Full Text PDF