Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis.
View Article and Find Full Text PDFType IV pili (TFP) are multifunctional micrometer-long filaments expressed at the surface of many prokaryotes. In Neisseria meningitidis, TFP are crucial for virulence. Indeed, these homopolymers of the major pilin PilE mediate interbacterial aggregation and adhesion to host cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Despite the availability of antibiotics and vaccines, remains a major cause of meningitis and sepsis in humans. Due to its extracellular lifestyle, bacterial adhesion to host cells constitutes an attractive therapeutic target. Here, we present a high-throughput microscopy-based approach that allowed the identification of compounds able to decrease type IV pilus-mediated interaction of bacteria with endothelial cells in the absence of bacterial or host cell toxicity.
View Article and Find Full Text PDFThe shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term 'one-dimensional' membrane wetting.
View Article and Find Full Text PDFObjectives: The aac(6')-Ih gene encoding aminoglycoside 6'-N-acetyltransferase type I subtype h [AAC(6')-Ih] is plasmid-borne in Acinetobacter baumannii where it confers high-level amikacin resistance, but its origin remains unknown. We searched for the gene in the genomes of a collection of 133 Acinetobacter spp. and studied its species specificity, expression and dissemination.
View Article and Find Full Text PDFUnlabelled: Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement.
View Article and Find Full Text PDFThe amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A.
View Article and Find Full Text PDFProtein-subunit vaccines as boosting strategies against tuberculosis (TB) infection are currently in the pipeline of TB vaccine research. Their main limitation is represented by their poor immunogenicity, which makes it necessary to couple protein-subunits with adjuvant molecules. In this study, we employed replication-deficient invasive Escherichia coli strains to deliver Mycobacterium tuberculosis proteins to the cytoplasm of non-phagocytic eukaryotic cells using various priming and prime-boosting vaccination protocols.
View Article and Find Full Text PDFIn Gram-negative bacteria, acquired 16S rRNA methyltransferases ArmA and NpmA confer high-level resistance to all clinically useful aminoglycosides by modifying, respectively, G1405 and A1408 in the A-site. These enzymes must coexist with several endogenous methyltransferases that are essential for fine-tuning of the decoding center, such as RsmH and RsmI in Escherichia coli, which methylate C1402 and RsmF C1407. The resistance methyltransferases have a contrasting distribution--ArmA has spread worldwide, whereas a single clinical isolate producing NpmA has been reported.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2014
Whole-genome sequencing of a collection of 103 Acinetobacter strains belonging to 22 validly named species and another 16 putative species allowed detection of genes for 50 new class D β-lactamases and 65 new Acinetobacter-derived cephalosporinases (ADC). All oxacillinases (OXA) contained the three typical motifs of class D β-lactamases, STFK, (F/Y)GN, and K(S/T)G. The phylogenetic tree drawn from the OXA sequences led to an increase in the number of OXA groups from 7 to 18.
View Article and Find Full Text PDFEfficient delivery of large intact vectors into mammalian cells remains problematical. Here we evaluate delivery by bacterial invasion of two large BACs of more than 150 kb in size into various cells. First, we determined the effect of several drugs on bacterial delivery of a small plasmid into different cell lines.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
July 2004
Intracellular bacteria can act as DNA delivery vectors into mammalian cells. Transfer of genetic information can be monitored by screening for cellular expression of a reporter gene under the control of an eukaryotic promoter. However, intracellular bacteria can also efficiently deliver heterologous proteins in the cell cytosol.
View Article and Find Full Text PDFGene transfer in vitro from intracellular bacteria to mammalian phagocytic and non-phagocytic cells and in vivo in mice has been reported. The bacteria used as DNA delivery vectors were engineered to lyze upon entry in the cell due to impaired cell wall synthesis for Shigella flexneri and invasive Escherichia coli, or production of a phage lysin for Listeria mono- cytogenes. In vivo gene transfer was obtained with attenuated Salmonella typhimurium and resulted in stimulation of mucosal immunity.
View Article and Find Full Text PDF