Autophagy has been described as harboring a dual role in cancer development and therapy. Depending on the context, it can exert either pro-survival or pro-death functions. Here, we review what is known about autophagy in crizotinib-treated ALK ALCL.
View Article and Find Full Text PDFPreviously it was shown that autophagy contributes to crizotinib resistance in ALK-positive anaplastic large cell lymphoma (ALK + ALCL). We asked if autophagy is equally important in two distinct subsets of ALK + ALCL, namely eporter nresponsive () and eporter esponsive (), of which RR cells display stem-like properties. Autophagic flux was assessed with a fluorescence tagged LC3 reporter and immunoblots to detect endogenous LC3 alongside chloroquine, an autophagy inhibitor.
View Article and Find Full Text PDFAnaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment.
View Article and Find Full Text PDFHaematopoiesis is a tightly orchestrated process where a pool of hematopoietic stem and progenitor cells (HSPCs) with high self-renewal potential can give rise to both lymphoid and myeloid lineages. The HSPCs pool is reduced with ageing resulting in few HSPC clones maintaining haematopoiesis thereby reducing blood cell diversity, a phenomenon called clonal haematopoiesis. Clonal expansion of HSPCs carrying specific genetic mutations leads to increased risk for haematological malignancies.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphomas are tumors that carry translocations involving the gene at the 2p23 locus, leading to the expression of ALK tyrosine kinase fusion oncoproteins. Amongst hematologic malignancies, these lymphomas are particular in that they express very low levels of B-cell lymphoma 2 (BCL2), a recognized inhibitor of apoptosis and autophagy, two processes that share complex interconnections. We have previously shown that treatment of ALK-positive anaplastic large cell lymphoma cells with the ALK tyrosine kinase inhibitor crizotinib induces autophagy as a pro-survival response.
View Article and Find Full Text PDFAutophagy is an evolutionarily conserved catabolic process, which is used by the cells for cytoplasmic quality control. This process is induced following different kinds of stresses e.g.
View Article and Find Full Text PDFAutophagy is a self-cannibalism process essential for tissue homeostasis, which can be activated following different environmental stressful conditions. In normal cells, autophagy could act as a brake to prevent tumorigenesis, but cancer cells are able to hijack this process to their own benefit, to promote tumor growth and/or tumor resistance to anti-cancer therapies. Scientists and clinicians attempt to modulate this process to improve therapies, using autophagy inhibitors or activators, some of them being tested currently in clinical trials against several types of tumors.
View Article and Find Full Text PDFAnaplastic Lymphoma Kinase-positive Anaplastic Large Cell Lymphomas (ALK+ ALCL) occur predominantly in children and young adults. Their treatment, based on aggressive chemotherapy, is not optimal since ALCL patients can still expect a 30% 2-year relapse rate. Tumor relapses are very aggressive and their underlying mechanisms are unknown.
View Article and Find Full Text PDFThe regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(-) ALCL to investigate the role of miR-150 downstream of NPM-ALK.
View Article and Find Full Text PDFOur current understanding of oncogenic Anaplastic Lymphoma Kinase (ALK)-induced lymphomagenesis has relied for over 20 years on multiple and complementary studies performed on various experimental models, encompassing ALK oncogene expressing cells, their grafts into immune-compromised mice, the generation of genetically engineered mouse models (GEMMs) and, when available, the use of patient samples from Anaplastic Large Cell Lymphoma (ALCL) tumour banks. Of note, and to our knowledge, no ALK-positive ALCL 3D culture system has been described so far. In this review, we will first outline how these different cell and mouse models were designed, and what key findings they revealed (or confirmed) towards oncogenic ALK-induced lymphomagenesis.
View Article and Find Full Text PDFAnaplastic large-cell lymphomas (ALCLs) bearing the t(2;5) translocation (ALK(+)ALCLs) are frequently characterized by skin colonization and associated with a poor prognosis. Using conditional transgenic models of anaplastic lymphoma kinase-positive (ALK(+)) lymphomas and human ALK(+)ALCL cell lines, in the present study, we show that high-mobility-group box-1 (HMGB-1), a proinflammatory cytokine, is released by ALK(+) cells, and demonstrate extracellular HMGB-1-stimulated secretion of the IL-8 chemokine by HaCaT keratinocytes through the involvement of MMP-9, PAR-2, and the NF-κB pathway. Furthermore, we demonstrate that, in vitro, IL-8 is able to induce the invasiveness of ALK(+) cells, which express the IL-8 receptors CXCR1 and CXCR2.
View Article and Find Full Text PDFAngiogenesis plays an essential role in several diseases of the eye and in the growth of solid tumors, but existing antiangiogenic therapies have limited benefits in several cases. We report the antiangiogenic effects of a monoclonal antibody, CL1-R2, in several animal models of neovascularization. CL1-R2 recognizes human CD160, a membrane receptor which is conserved in various mammal species.
View Article and Find Full Text PDFNPM-ALK (nucleophosmin-anaplastic lymphoma kinase) and TPM3-ALK (nonmuscular tropomyosin 3-anaplastic lymphoma kinase) are oncogenic tyrosine kinases implicated in the pathogenesis of human ALK-positive lymphoma. We report here the development of novel conditional mouse models for ALK-induced lymphomagenesis, with the use of the tetracycline regulatory system under the control of the EmuSRalpha enhancer/promoter. The expression of either oncogene resulted in the arrest of the differentiation of early B cells and lymphomagenesis.
View Article and Find Full Text PDFBackground: Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as "oncogene-addiction." However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment.
Methodology/principal Findings: To examine how the MYC and K-ras(G12D) oncogenes cooperate for the initiation and maintenance of tumorigenesis, we generated double conditional transgenic tumor models of lung adenocarcinoma and lymphoma.
Overexpression and activation of TPM3-ALK tyrosine kinase fusion protein is a causal oncogenic event in the development of Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic ALK-positive tumors. Thus, the development of ALK specific tyrosine kinase inhibitors is a current therapeutic challenge. Animal models are essential to assess, in vivo, the efficiency of ALK-oncogene inhibitors and to identify new and/or additional therapeutic targets in the ALK tumorigenesis pathway.
View Article and Find Full Text PDFWith the use of microarray gene-expression profiling, we analyzed a homogeneous series of 32 patients with systemic anaplastic large-cell lymphoma (ALCL) and 5 ALCL cell lines. Unsupervised analysis classified ALCL in 2 clusters, corresponding essentially to morphologic subgroups (ie, common type vs small cell and "mixed" variants) and clinical variables. Patients with a morphologic variant of ALCL had advanced-stage disease.
View Article and Find Full Text PDFThe targeted inactivation of oncogenes offers a rational therapeutic approach for the treatment of cancer. However, the therapeutic inactivation of a single oncogene has been associated with tumor recurrence. Therefore, it is necessary to develop strategies to override mechanisms of tumor escape from oncogene dependence.
View Article and Find Full Text PDFKnowledge of the molecular networks controlling the proliferation and fate of hematopoietic stem cells (HSC) is essential to understand their function in maintaining blood cell production during normal hematopoiesis and upon clinical transplantation. Using highly purified stem and progenitor cell populations, we define the proliferation index and status of the cell cycle machinery at discrete stages of hematopoietic differentiation and during cytokine-mediated HSC mobilization. We identify distinct sets of cell cycle proteins that specifically associate with differentiation, self-renewal, and maintenance of quiescence in HSC and progenitor cells.
View Article and Find Full Text PDFMicroarray-based formats offer a high-resolution alternative to conventional, chromosome-based comparative genomic hybridization (CGH) methods for assessing DNA copy number alteration (CNA) genome-wide in human cancer. For murine tumors, array CGH should provide even greater advantage, since murine chromosomes are more difficult to individually discern. We report here the adaptation and evaluation of a cDNA microarray-based CGH method for the routine characterization of CNAs in murine tumors, using mouse cDNA microarrays representing approximately 14,000 different genes, thereby providing an average mapping resolution of 109 kb.
View Article and Find Full Text PDFThe ability to model cancer in the mouse has provided a robust methodology to dissect the molecular etiology of cancer. These models serve as potentially powerful platforms to preclinically evaluate novel therapeutics. In particular, the recent development of strategies to conditionally induce the or knockout the function of genes in a tissue specific manner has enabled investigators to engineer mice to demonstrate that the targeted inactivation of specific oncogenes can be effective in inducing sustained regression of tumors.
View Article and Find Full Text PDFSrc homology domain 2-containing inositol 5-phosphatases 1 and 2 (SHIP1 and SHIP2) are capable of dephosphorylating the second messenger PtdIns(3,4,5) P3 (phosphatidylinositol 3,4,5-trisphosphate) and interacting with several signalling proteins. SHIP1 is essentially expressed in haematopoietic cells, whereas SHIP2, a closely related enzyme, is ubiquitous. In the present study, we show that SHIP1 and SHIP2 are expressed as functional PtdIns(3,4,5) P3 5-phosphatases in human blood platelets and are capable of interacting when these two lipid phosphatases are co-expressed, either naturally (platelets and A20 B lymphoma cells) or artificially (COS-7 cells).
View Article and Find Full Text PDFMany recent reports demonstrate that at least initially, the inactivation of an oncogene can induce sustained regression of even a highly invasive and genetically complex cancer. However, upon prolonged oncogene inactivation, some cancers ultimately relapse, becoming independent of the very oncogene that initiated the process of tumorigenesis. Understanding the specific mechanisms by which cancers can escape dependence upon a particular oncogene will be critical to anticipate mechanisms by which human cancers will evade therapies that target individual oncogenes.
View Article and Find Full Text PDFThe targeted inactivation of oncogenes may be a specific and effective treatment for cancer. However, because human cancers are the consequence of multiple genetic changes, the inactivation of one oncogene may not be sufficient to cause sustained tumor regression. Moreover, cancers are genomically unstable and may readily compensate for the inactivation of a single oncogene.
View Article and Find Full Text PDFPhosphoinositides play a central role in the control of several cellular events including actin cytoskeleton organization. Here we show that, upon infection of epithelial cells with the Gram-negative pathogen Shigella flexneri, the virulence factor IpgD is translocated directly into eukaryotic cells and acts as a potent inositol 4-phosphatase that specifically dephosphorylates phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] into phosphatidylinositol 5-monophosphate [PtdIns(5)P] that then accumulates. Transfection experiments indicate that the transformation of PtdIns(4,5)P(2) into PtdIns(5)P by IpgD is responsible for dramatic morphological changes of the host cell, leading to a decrease in membrane tether force associated with membrane blebbing and actin filament remodelling.
View Article and Find Full Text PDF