Nitric oxide synthases (NOSs) are flavohemeproteins that catalyze the oxidation of L-arginine to L-citrulline with formation of the signaling molecule nitric oxide (NO). In addition to their fundamental role in NO biosynthesis, NOSs are also involved in the formation of reactive oxygen and nitrogen species (RONS) and in the interactions with some drugs. 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) is a dinitroaromatic compound tested as an antitumor prodrug that requires reduction to the 2- and 4-hydroxylamines to be cytotoxic.
View Article and Find Full Text PDFTwenty five derivatives of the drugs terfenadine and ebastine have been designed, synthesized and evaluated as inhibitors of recombinant human CYP2J2. Compound 14, which has an imidazole substituent, is a good non-competitive inhibitor of CYP2J2 (IC(50)=400nM). It is not selective towards CYP2J2 as it also efficiently inhibits the other main vascular CYPs, such as CYP2B6, 2C8, 2C9 and 3A4; however, it could be an interesting tool to inhibit all these vascular CYPs.
View Article and Find Full Text PDFThe active site topology, substrate specificity, and biological roles of the human cytochrome P450 CYP2J2, which is mainly expressed in the cardiovascular system, are poorly known even though recent data suggest that it could be a novel biomarker and potential target for therapy of human cancer. This paper reports a first series of high-affinity, selective CYP2J2 inhibitors that are related to terfenadine, with K(i) values as low as 160nM, that should be useful tools to determine the biological roles of CYP2J2.
View Article and Find Full Text PDFThe structure of the anti-inflammatory drug diclofenac bound in the active site of rabbit microsomal cytochrome P450 2C5/3LVdH was determined by X-ray crystallography to 2.1 A resolution. P450 2C5/3LVdH and the related enzyme 2C5dH catalyze the 4'-hydroxylation of diclofenac with apparent K(m) values of 80 and 57 microM and k(cat) values of 13 and 16 min(-1), respectively.
View Article and Find Full Text PDFThe inhibitory effects of a series of sulfaphenazole (SPA) derivatives were studied on two modified forms of rabbit liver cytochrome P450 2C5 (CYP2C5), CYP2C5dH, and structurally characterized CYP2C5/3LVdH and compared to the previously described effects of these compounds on human CYP2C8, 2C9, 2C18, and 2C19. SPA and other negatively charged compounds that potently inhibit CYP2C9 had very little effect on CYP2C5dH, whereas neutral, N-alkylated derivatives exhibited IC50 values between 8 and 22 microM. One of the studied compounds, 4, that derives from SPA by replacement of its NH(2) substituent with a methyl group and by N-methylation of its sulfonamide moiety, acted as a good substrate for all CYP2Cs used in this study.
View Article and Find Full Text PDFA study of the oxidation of a series of guanidines related to L-arginine (L-Arg) and of various alkyl- and arylguanidines, by recombinant NO-synthase II (NOS II), led us to the discovery of the first non-alpha-amino acid guanidine substrate of NOS, acting as an efficient NO precursor. This compound, 3-(trifluoromethyl)propylguanidine, 4, led to a rate of NO formation (k(cat) = 220 +/- 50 min(-1)) only 2 times lower than that of L-Arg. Formation of 1 mol of NO upon NOS II-catalyzed oxidation of 4 occurred with consumption of 2.
View Article and Find Full Text PDFThe formation of nitric oxide (NO) was followed during the oxidation of 37 N-hydroxyguanidines or related derivatives, including 18 new N-aryl N'-hydroxyguanidines, by recombinant inducible nitric oxide synthase (NOS II). Several N-aryl N'-hydroxyguanidines bearing a relatively small, electron-donating para subtituent, such as H, F, Cl, CH(3), OH, OCH(3), and NH(2), led to NO formation rates between 8 and 41% of that of NO formation from the natural NOS substrate, N(omega)-hydroxy-L-arginine (NOHA). The characteristics of these reactions were very similar to those previously reported for the oxidation of NOHA by NOS:(i) the strict requirement of NOS containing (6R)-5,6,7,8-tetrahydro-L-biopterin, reduced nicotinamide adenine dinucleotide phosphate, and O(2) for the oxidation to occur, (ii) the formation of NO and the corresponding urea in a 1:1 molar ratio, and (iii) a strong inhibitory effect of the classical NOS inhibitors such as N(omega)-nitro-L-arginine and S-ethyl-iso-thiourea.
View Article and Find Full Text PDF