TRPC proteins become involved in Ca2+ entry following the activation of Gq-protein coupled receptors. TRPC6 is inserted into the plasma membrane upon stimulation and remains in the plasma membrane as long as the stimulus is present. However, the mechanism that regulates the trafficking of TRPC6 is unclear.
View Article and Find Full Text PDFThirteen years ago, it was suggested that exocytotic insertion of store-operated channels into the plasma membrane lead to increased Ca(2+) entry in non-excitable cells upon G protein-coupled or tyrosine kinase receptor stimulation. Since the discovery of the TRP channel superfamily and their involvement in receptor-induced Ca(2+) entry, many studies have shown that different members of the TRP superfamily translocate into the plasma membrane upon stimulation. While the exact molecular mechanism by which TRP channels insert into the plasma membrane is unknown, TRP-binding proteins have been shown to directly regulate this trafficking.
View Article and Find Full Text PDFMammalian transient receptor potential canonical channels have been proposed as the molecular entities associated with calcium entry activity in nonexcitable cells. Amino acid sequence analyses of TRPCs revealed the presence of ankyrin-like repeat domains, one of the most common protein-protein interaction motifs. Using a yeast two-hybrid interaction assay, we found that the second ankyrin-like repeat domain of TRPC6 interacted with MxA, a member of the dynamin superfamily.
View Article and Find Full Text PDFMutations in the presenilin (PS) genes are linked to the development of early-onset Alzheimer's disease by a gain-of-function mechanism that alters proteolytic processing of the amyloid precursor protein (APP). Recent work indicates that Alzheimer's-disease-linked mutations in presenilin1 and presenilin2 attenuate calcium entry and augment calcium release from the endoplasmic reticulum (ER) in different cell types. However, the regulatory mechanisms underlying the altered profile of Ca(2+) signaling are unknown.
View Article and Find Full Text PDFTRPC proteins are the mammalian homologues of the Drosophila transient receptor potential channel and are involved in calcium entry after agonist stimulation of non-excitable cells. Seven mammalian TRPCs have been cloned, and their mechanisms of activation and regulation are still the subject of intense research. TRPC proteins interact with the inositol 1,4,5-trisphosphate receptor, and the conformational coupling plays a critical role in the activation of calcium entry.
View Article and Find Full Text PDF