Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers.
View Article and Find Full Text PDFThe mesoscopic organization adopted by two primary amphipathic peptides, P(beta) and P(alpha), in Langmuir-Blodgett (LB) films made of either the pure peptide or peptide-phospholipid mixtures was examined by atomic force microscopy. P(beta), a potent cell-penetrating peptide (CPP), and P(alpha) mainly differ by their conformational states, predominantly a beta-sheet for P(beta) and an alpha-helix for P(alpha), as determined by Fourier transform infrared spectroscopy. LB films of pure peptide, transferred significantly below their collapse pressure, were characterized by the presence of supramolecular structures, globular aggregates for P(beta) and filaments for P(alpha), inserted into the monomolecular film.
View Article and Find Full Text PDFHuman calcitonin and its C-terminal fragment 9-32 (hCT(9-32)) administered in a spray translocate into respiratory nasal epithelium with an effect similar to intravenous injection. hCT(9-32) is an efficient carrier to transfer the green fluorescent protein into excised bovine nasal mucosa. To understand the translocation of hCT(9-32) across plasma membranes, we investigated its interactions with phospholipids and its interfacial structure using model lipid monolayers.
View Article and Find Full Text PDF