Adaptive radiation, whereby a clade pairs rapid speciation with rapid phenotypic evolution, can result in an uneven distribution of biodiversity across the Metazoan tree. The cichlid fishes of East Africa have undergone multiple adaptive radiations within the major rift lakes. Cichlid radiations are marked by divergence across distinct habitat gradients producing many morphological and behavioural adaptations.
View Article and Find Full Text PDFCovariation among discrete phenotypes can arise due to selection for shared functions, and/or shared genetic and developmental underpinnings. The consequences of such phenotypic integration are far-reaching and can act to either facilitate or limit morphological variation. The vertebrate brain is known to act as an "organizer" of craniofacial development, secreting morphogens that can affect the shape of the growing neurocranium, consistent with roles for pleiotropy in brain-neurocranium covariation.
View Article and Find Full Text PDFPhenotypic integration is an important metric that describes the degree of covariation among traits in a population, and is hypothesized to arise due to selection for shared functional processes. Our ability to identify the genetic and/or developmental underpinnings of integration is marred by temporally overlapping cell-, tissue- and structure-level processes that serve to continually 'overwrite' the structure of covariation among traits through ontogeny. Here, we examine whether traits that are integrated at the phenotypic level also exhibit a shared genetic basis (e.
View Article and Find Full Text PDF