Although amphiphilic cyclodextrin derivatives (ACDs) serve as valuable building blocks for nanomedicine formulations, their widespread production still encounters various challenges, limiting large-scale manufacturing. This work focuses on a robust alternative pathway using mineral base catalysis to transesterify β-cyclodextrin with long-chain vinyl esters, yielding ACD with modular and controlled hydrocarbon chain grafting. ACDs with a wide range of degrees of substitution (DS) were reliably synthesized, as indicated by extensive physicochemical characterization, including MALDI-TOF mass spectrometry.
View Article and Find Full Text PDFIn the field of nanotechnologies, theranostic approaches and fixed-dose combination products require the development of innovative carriers able to co-encapsulate several entities of interest. This communication describes the preparation and characterization of lipid-based Janus compartmented nanoparticles. They were successfully prepared using a scalable process with pharmaceutically approved excipients.
View Article and Find Full Text PDFThis work aimed at preparing new nanoscale assemblies based on an amphiphilic bio-esterified β-cyclodextrin (β-CD), substituted at the secondary face with n-decanoic fatty acid chains (β-CD-C), and monoolein (MO) as new carriers for parenteral drug delivery. Stable binary (β-CD-C/MO) and ternary (β-CD-C/MO/stabilizer) nanoscale assemblies close to 100nm in size were successfully prepared in water by the solvent displacement method. The generated nanoparticles were fully characterized by dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, residual solvent analysis, complement activation and the contribution of each formulation parameter was determined by principal component analysis.
View Article and Find Full Text PDFSoft mesoporous hierarchically structured particles were created by the self-assembly of an amphiphilic deep cavitand cyclodextrin βCD-nC (degree of substitution n = 7.3), with a nanocavity grafted by multiple alkyl (C) chains on the secondary face of the βCD macrocycle through enzymatic biotransesterification, and the nonlamellar lipid monoolein (MO). The effect of the non-ionic dispersing agent polysorbate 80 (P80) on the liquid crystalline organization of the nanocarriers and their stability was studied in the context of vesicle-to-cubosome transition.
View Article and Find Full Text PDF6BrCaQ is a promising anti-cancer agent derived from novobiocin, which has been shown to inhibit Hsp90. 6BrCaQ was loaded into nanometer-scaled phospholipid vesicles (liposomes) suitable for drug delivery to solid tumors. The effective incorporation of the drug within the phospholipid bilayer was investigated by differential scanning calorimetry.
View Article and Find Full Text PDFThe tumour microenvironment may contribute to tumorigenesis owing to mechanical forces such as fibrotic stiffness or mechanical pressure caused by the expansion of hyper-proliferative cells. Here we explore the contribution of the mechanical pressure exerted by tumour growth onto non-tumorous adjacent epithelium. In the early stage of mouse colon tumour development in the Notch(+)Apc(+/1638N) mouse model, we observed mechanistic pressure stress in the non-tumorous epithelial cells caused by hyper-proliferative adjacent crypts overexpressing active Notch, which is associated with increased Ret and β-catenin signalling.
View Article and Find Full Text PDFExtra-large nanochannel formation in the internal structure of cationic cubosome nanoparticles results from the interplay between charge repulsion and steric stabilization of the lipid membrane interfaces and is evidenced by cryogenic transmission electron microscopy (Cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The swollen cubic symmetry of the lipid nanoparticles emerges through a shaping transition of onion bilayer vesicle intermediates containing a fusogenic nonlamellar lipid. Cationic amphiphile cubosome particles, thanks to the advantages of their liquid crystalline soft porous nanoarchitecture and capability for multi-drug nanoencapsulation, appear to be of interest for the design of mitochondrial targeting devices in anti-cancer therapies and as siRNA nanocarriers for gene silencing.
View Article and Find Full Text PDFA variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, β-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic modifications of their macrocycles using phospholipidyl, peptidolipidyl, cholesteryl, and oligo(ethylene oxide) anchors as well as variable numbers of grafted hydrophobic hydrocarbon or fluorinated chains. These novel compounds may self-assemble in an aqueous medium into different types of supramolecular nanoassemblies (vesicles, micelles, nanorods, nanospheres, and other kinds of nanoparticles and liquid crystalline structures).
View Article and Find Full Text PDFThe present paper deals with the crystallization behavior of glyceryl behenate mixtures that are extensively used in the field of drug delivery. The aim of the study was to understand the structural and thermal behaviors of Compritol(®) by considering first the individual polymorphism of the main components constituting this excipient and then their mixtures. This excipient mainly contains dibehenin (∼50%), tribehenin (∼30%) and monobehenin (20%).
View Article and Find Full Text PDFExpert Opin Drug Deliv
July 2014
Introduction: The term Janus particles was used to describe particles that are the combination of two distinct sides with differences in chemical nature and/or polarity on each face. Due to the exponential growth of interest on multifunctional nanotechnologies, such anisotropic nanoparticles are promising tools in the field of drug delivery.
Areas Covered: The main preparation processes and the materials used have been described first.
Chemical exchange saturation transfer (CEST) probes issued from the encapsulation of a water proton paramagnetic shift reagent into the inner aqueous volume of lipid vesicles provide an emerging class of frequency-selective contrast agents with huge potential in the field of molecular magnetic resonance imaging (MRI). This work deals with the generation of such LipoCEST agents properly designed to optimize, under isotonic conditions, the chemical shift offset of the intra-liposomal water protons as well as the number of exchangeable protons under reasonably low radiofrequency (RF) fields of saturation. The strategy lies in the loading of poly(ethylene glycol)-stabilized nanosized liposomes with uncharged lanthanide chelates, binding more than one water molecule in the first hydration sphere, exemplified here by [Tm(III)-DO3A (H2 O)2 ] complex.
View Article and Find Full Text PDFMembrane shapes, produced by dynamically assembled lipid/protein architectures, are crucial for both physiological functions and the design of therapeutic nanotechnologies. Here we investigate the dynamics of lipid membrane-neurotrophic BDNF protein complexes formation and ordering in nanoparticles, with the purpose of innovation in nanostructure-based neuroprotection and biomimetic nanoarchitectonics. The kinetic pathway of membrane states associated with rapidly occurring nonequilibrium self-assembled lipid/protein nanoarchitectures was determined by millisecond time-resolved small-angle X-ray scattering (SAXS) at high resolution.
View Article and Find Full Text PDFNeurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons.
View Article and Find Full Text PDFDeficits or overexpression of neurotrophins cause neurodegenerative diseases and psychiatric disorders. These proteins are required for the maintenance of the function, plasticity and survival of neurons in the central (CNS) and peripheral nervous systems. Significant efforts have been devoted to developing therapeutic delivery systems that enable control of neurotrophin dosage in the brain.
View Article and Find Full Text PDFDefining appropriate delivery strategies of therapeutic proteins, based on lipid nanoparticulate carriers, requires knowledge of the nanoscale organization that determines the loading and release properties of the nanostructured particles. Nanoencapsulation of three cationic proteins (human brain-derived neurotrophic factor (BDNF), α-chymotrypsinogen A, and histone H3) was investigated using anionic nanoparticle (NP) carriers. PEGylated lipid NPs were prepared from self-assembled liquid crystalline phases involving monoolein and eicosapentaenoic acid.
View Article and Find Full Text PDFStructural changes occurring on a millisecond time scale during uptake of DNA by cationic lipid nanocarriers are monitored by time-resolved small-angle X-ray scattering (SAXS) coupled to a rapid-mixing stopped-flow technique. Nanoparticles (NPs) of nanochannel organization are formed by PEGylation, hydration, and dispersion of a lipid film of the fusogenic lipid monoolein in a mixture with positively charged (DOMA) and PEGylated (DOPE-PEG2000) amphiphiles and are characterized by the inner cubic structure of very large nanochannels favorable for DNA upload. Ultrafast structural dynamics of complexation and assembly of these cubosome particles with neurotrophic plasmid DNA (pDNA) is revealed thanks to the high brightness of the employed synchrotron X-ray beam.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
April 2013
The monoclinic C2 crystal structure of an α-cyclodextrin/1-undecanol host-guest inclusion complex was solved using single-crystal neutron diffraction. Large high-quality crystals were specially produced by optimizing temperature-controlled growth conditions. The hydrate crystallizes in a channel-type structure formed by head-to-head dimer units of α-cyclodextrin molecules stacked like coins in a roll.
View Article and Find Full Text PDFThermodynamically stable nanovesicle structures are of high interest for academia and industry in a wide variety of application fields, ranging from preparation of nanomaterials to nanomedicine. Here, we show the ability of quaternary ammonium surfactants and sterols to self-assemble, forming stable amphiphilic bimolecular building-blocks with the appropriate structural characteristics to form in aqueous phases, closed bilayers, named quatsomes, with outstanding stability, with time and temperature. The molecular self-assembling of cholesterol and surfactant cetyltrimethylammonium bromide (CTAB) was studied by quasi-elastic light scattering, cryogenic transmission electron microscopy, turbidity (optical density) measurements, and molecular dynamic simulations with atomistic detail, upon varying the cholesterol-to-surfactant molar ratio.
View Article and Find Full Text PDFStudies of nonequilibrium lipid polymorphism at the nanoscale contribute to the in-depth understanding of the structural pathways for formation of aqueous channels and emerging of channels-network ordering in liquid-crystalline (LC) nanovehicles. We present experimental structural evidence for the smallest tetrahedral-type lipid membrane aggregate, which involves completely formed nanochannels and occurs as an early intermediate state during the bilayer vesicle-to-cubosome particle transition. Nanovehicles are generated from a self-assembled lipid mixture and studied by means of high-resolution cryogenic transmission electron microscopy (cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS).
View Article and Find Full Text PDFThe purpose of this work is to investigate the entrapment of protein molecules in cubosomic nanocarriers that are sterically stabilized by an amphiphilic poly(ethylene glycol) (PEG) derivative. Toward that aim, the mechanism of fragmentation of a self-assembled, PEGylated cubic lipid phase into nanoparticles (NPs) is investigated in excess aqueous medium. The molar ratio between the cubic-phase-forming lipid monoolein (MO) and its PEGylated derivative (MO-PEG(2000)) is selected as to favor the formation of inverted-type liquid-crystalline (LC) structures (permitting one to reveal the stages of the fragmentation and bicontinuous membrane NP assembly process) rather than a phase transformation to lamellar or micellar phases.
View Article and Find Full Text PDFThis Perspective explores the recent progress made by means of small-angle scattering methods in structural studies of phase transitions in amphiphilic liquid-crystalline systems with nanochannel architectures and outlines some future directions in the area of hierarchically organized and stimuli-responsive nanochanneled assemblies involving biomolecules. Time-resolved small-angle X-ray scattering investigations using synchrotron radiation enable monitoring of the structural dynamics, the modulation of the nanochannel hydration, as well as the key changes in the soft matter liquid-crystalline organization upon stimuli-induced phase transitions. They permit establishing of the inner nanostructure transformation kinetics and determination of the precise sizes of the hydrophobic membraneous compartments and the aqueous channel diameters in self-assembled network architectures.
View Article and Find Full Text PDFThis study deals with the development of an oral controlled-release dosage form of a highly water-soluble antiepileptic drug. In this respect, drug-loaded spheroid particles close to 380 μm in diameter and composed of lipid binders were prepared by prilling. The purpose here was to thoroughly characterize the controlled-release mechanism of the drug in aqueous pH-6.
View Article and Find Full Text PDFLipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids.
View Article and Find Full Text PDFThe encapsulation and release of peptides, proteins, nucleic acids, and drugs in nanostructured lipid carriers depend on the type of the self-assembled liquid-crystalline organization and the structural dimensions of the aqueous and membraneous compartments, which can be tuned by the multicomponent composition of the systems. In this work, small-angle X-ray scattering (SAXS) investigation is performed on the 'melting' transition of the bicontinuous double diamond cubic phase, formed by pure glycerol monooleate (MO), upon progressive inclusion of varying fractions of pharmaceutical-grade glycerol monooleate (GO) in the hydrated system. The self-assembled MO/GO mixtures are found to form diamond (Pn3m) inverted cubic, inverted hexagonal (H(II)), and sponge (L(3)) phases at ambient temperature in excess of aqueous medium without heat treatment.
View Article and Find Full Text PDFThe present study deals with the morphological modifications of giant dioleoyl phosphatidylcholine vesicles (DOPC GUVs) induced by the nonionic surfactant n-octyl β,D-glucopyranoside at sublytic levels, i.e., in the first steps of the vesicle-to-micelle transition process, when surfactant inserts into the vesicle bilayer without disruption.
View Article and Find Full Text PDF