Publications by authors named "Sylvia Vekich"

Background: Initial pharmacokinetic (PK) studies of discovery compounds are conducted in mice to demonstrate exposure prior to conducting efficacy studies. PK information obtained from a single mouse by serial blood microsampling, dried blood spot collection and analyses using microbore (1 mm internal diameter column) LC-MS/MS is presented. Ex vivo blood to plasma concentration ratios (BPRs) from mouse PK studies were compared with in vitro BPRs for 15 compounds.

View Article and Find Full Text PDF

PF04942847 [2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide] was identified as an orally available, ATP-competitive, small-molecule inhibitor of heat shock protein 90 (HSP90). The objectives of the present study were: 1) to characterize the pharmacokinetic-pharmacodynamic relationship of the plasma concentrations of PF04942847 to the inhibition of HSP90-dependent protein kinase, AKT, as a biomarker and 2) to characterize the relationship of AKT degradation to tumor growth inhibition as a pharmacological response (antitumor efficacy). Athymic mice implanted with MDA-MB-231 human breast cancer cells were treated with PF04942847 once daily at doses selected to encompass ED(50) values.

View Article and Find Full Text PDF

The objective of this study was to assess the physiologically based pharmacokinetic (PBPK) model for predicting plasma concentration-time profiles of orally available cMet kinase inhibitors, (R)-3-[1-(2,6-dichloro-3-fluoro-phenyl)-ethoxy]-5-(1-piperidin-4-yl-1H-pyrazol-4-yl)-pyridin-2-ylamine (PF02341066) and 2-[4-(3-quinolin-6-ylmethyl-3H-[1,2,3]triazolo[4,5-b]pyrazin-5-yl)-pyrazol-1-yl]-ethanol (PF04217903), in humans. The prediction accuracy of pharmacokinetics (PK) by PBPK modeling was compared with that of a traditional one-compartment PK model based on allometric scaling. The predicted clearance values from allometric scaling with the correction for the interspecies differences in protein binding were used as a representative comparison, which showed more accurate PK prediction in humans than the other methods.

View Article and Find Full Text PDF

Contrast-enhanced computed tomography (CECT) and contrast-enhanced destruction-replenishment subharmonic ultrasound (CEDRSU) were used to quantify blood flow and tumor viability during antiangiogenic therapy. SU11657 or placebo was administered to R3230AC tumor-baring rats over a two-week period. CEDRSU vascular volume (ASI) and volume flow (VF) and CECT perfusion (PR) and permeability (PM) measurements were made on day 0, 7 and 14.

View Article and Find Full Text PDF