Publications by authors named "Sylvia Thompson"

The goal of immune-based tumor therapies is the activation of immune cells reactive against a broad spectrum of tumor-expressed antigens. Vaccines based on chaperone proteins appear promising as these proteins naturally exist as complexes with various protein fragments including those derived from tumor-associated antigens. Multi-chaperone systems are expected to have highest polyvalency as different chaperones can carry distinct sets of antigenic fragments.

View Article and Find Full Text PDF

CD4(+)CD25(+) regulatory T cells have been characterized as a critical population of immunosuppressive cells. They play a crucial role in cancer progression by inhibiting the effector function of CD4(+) or CD8(+) T lymphocytes. However, whether regulatory T lymphocytes that expand during tumor progression can modulate dendritic cell function is unclear.

View Article and Find Full Text PDF

In this study, we show that rodent albumin is expressed by and cell surface localized on at least some murine tumor cells. We have been able to purify this tumor-expressed albumin from in vivo grown tumor masses. The tumor-expressed albumin, unlike normal serum albumin purified from blood, is capable of inhibiting T-cell activation, proliferation, and function in both in vitro and in vivo settings.

View Article and Find Full Text PDF

We have previously reported that chaperonerich cell lysates (CRCL) derived from the BCR-ABL+ 12B1 leukemia activate dendritic cells (DCs) and stimulate leukemia-specific immune responses. Because CRCL contain a variety of heat shock/chaperone proteins, we theorized that CRCL obtained from BCR-ABL+ leukemias are likely to chaperone BCR-ABL-derived fusion peptides and that DCs pulsed with 12B1 CRCL could cross-present BCR-ABL fusion peptides to T cells. We found that splenocytes from mice vaccinated with BCR-ABL+ leukemia-derived CRCL secreted interferon-gamma (IFN-gamma) when restimulated with a BCR-ABL peptide, GFKQSSKAL, indicating that BCR-ABL peptides are chaperoned by leukemia-derived CRCL.

View Article and Find Full Text PDF