Administered by intramuscular injection, a DNA vaccine (pIRF1A-G) containing the promoter regions upstream of the rainbow trout interferon regulatory factor 1A gene (IRF1A) driven the expression of the infectious hematopoietic necrosis virus (IHNV) glycoprotein (G) elicited protective immune responses in rainbow trout (Oncorhynchus mykiss). However, less laborious and cost-effective routes of DNA vaccine delivery are required to vaccinate large numbers of susceptible farmed fish. In this study, the pIRF1A-G vaccine was encapsulated into alginate microspheres and orally administered to rainbow trout.
View Article and Find Full Text PDFThe VP2 gene of infectious pancreatic necrosis virus, encoded in an expression plasmid and encapsulated in alginate microspheres, was used for oral DNA vaccination of fish to better understand the carrier state and the action of the vaccine. The efficacy of the vaccine was evaluated by measuring the prevention of virus persistence in the vaccinated fish that survived after waterborne virus challenge. A real-time RT-qPCR analysis revealed lower levels of IPNV-VP4 transcripts in rainbow trout survivors among vaccinated and challenged fish compared with the control virus group at 45 days post-infection.
View Article and Find Full Text PDFViral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10.
View Article and Find Full Text PDFA DNA vaccine based on the VP2 gene of infectious pancreatic necrosis virus (IPNV) was incorporated into feed to evaluate the effectiveness of this oral delivery method in rainbow trout. Lyophilized alginate-plasmid complexes were added to feed dissolved in water and the mixture was then lyophilized again. We compared rainbow trout that were fed for 3 consecutive days with vaccine pellets with fish that received the empty plasmid or a commercial pellet.
View Article and Find Full Text PDFDev Comp Immunol
May 2014
There are still many details of how intestinal immunity is regulated that remain unsolved in teleost. Although leukocytes are present all along the digestive tract, most immunological studies have focused on the posterior segments and the importance of each gut segment in terms of immunity has barely been addressed. In the current work, we have studied the regulation of several immune genes along five segments of the rainbow trout (Oncorhynchus mykiss) digestive tract, comparing the effects observed in response to an infectious pancreatic necrosis virus (IPNV) infection to those elicited by oral vaccination with a plasmid coding for viral VP2.
View Article and Find Full Text PDFAlthough previous studies have characterized some aspects of the immune response of the teleost gut in response to diverse pathogens or stimuli, most studies have focused on the posterior segments exclusively. However, there are still many details of how teleost intestinal immunity is regulated that remain unsolved, including the location of IgM(+) and IgT(+) B cells along the digestive tract and their role during the course of a local stimulus. Thus, in the current work, we have studied the B cell response in five different segments of the rainbow trout (Oncorhynchus mykiss) digestive tract in both naïve fish and fish orally vaccinated with an alginate-encapsulated DNA vaccine against infectious pancreatic necrosis virus (IPNV).
View Article and Find Full Text PDFPersistent infection by IPNV was induced in RTG-2 and RTG-P1 cells in vitro and the influence of this phenomenon on viral infectivity, viral antigen expression and interference with homologous and heterologous viruses was characterized over successive passages. The induction of IFN was also assessed, as was the sequence of the VP2 viral capsid protein, the region believed to be responsible for virulence, attenuation or persistence. Viral antigen expression was recorded in cells with no evidence of cytopathic effects and in these conditions, flow cytometry was more sensitive than RT-PCR to demonstrate the presence of a non-lytic virus.
View Article and Find Full Text PDFThe work presented here describes the construction of a plasmid encoding the VP2 gene of the infectious pancreatic necrosis virus (IPNV), its expression in BF-2 cells and an evaluation of its activity in brown trout (Salmo trutta L) soon after injection. Preliminary experiments to evaluate the potential of the plasmid to induce neutralizing antibodies were also performed. We established a BF-2 cell line that expresses VP2 constitutively and we examined the infection of these VP2-transfected BF-2 cells with homologous and heterologous viruses.
View Article and Find Full Text PDFWe examined the ability of several fish viruses to induce protection against homologous or heterologous viruses in single or double infections, and assessed whether such protection is correlated with innate immunity or expression of the Mx gene. Monolayers of BF2 cells pre-treated with supernatants of brown trout (Salmo trutta L.) macrophage cultures that had been stimulated with either polyinosinic polycytidylic acid (poly I:C) or viruses, such as infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) or a mixture of the two, showed varying degrees of protection against viral infections.
View Article and Find Full Text PDFVet Immunol Immunopathol
March 2006
Double-stranded RNA and type I interferon-like activity induce an antiviral state in vertebrate cells and in several fish cell lines by increasing the expression of proteins that inhibit virus replication. We compared the protection induced by the polyinosinic:polycytidylic acid (poly I:C) or poly I:C plus transfection agents against the infectious pancreatic necrosis virus (IPNV) and the infectious hematopoietic necrosis virus (IHNV) in BF-2 cells, with that induced in RTG-2, CHSE-214, or SAF cells. In addition, we examined the reduction in the infective titers of these viruses and the correlation with Mx protein expression as IFN marker.
View Article and Find Full Text PDF