Herein we report the structure-activity relationship (SAR) studies and optimization of new highly potent and selective CRTH2 receptor antagonists as potential follow-ups of our previous reported clinical candidate setipiprant (ACT-129968) for the treatment of respiratory diseases. Structural modification of the amide part of setipiprant (ACT-129968) led to the identification of the tetrahydrocarbazole derivative (S)-B-1 (ACT-453859) ((S)-2-(3-((5-chloropyrimidin-2-yl)(methyl)amino)-6-fluoro-1,2,3,4-tetrahydro-9H-carbazol-9-yl)acetic acid). This compound which displayed a substantial improvement in potency in the presence of plasma versus setipiprant (ACT-129968) has exhibited an excellent overall pharmacokinetic profile.
View Article and Find Full Text PDFPalladium-catalysed cross-coupling reactions, central tools in fine-chemical synthesis, predominantly employ soluble metal complexes despite recognized challenges with product purification and catalyst reusability. Attempts to tether these homogeneous catalysts on insoluble carriers have been thwarted by suboptimal stability, which leads to a progressively worsening performance due to metal leaching or clustering. The alternative application of supported Pd nanoparticles has faced limitations because of insufficient activity under the mild conditions required to avoid thermal degradation of the substrates or products.
View Article and Find Full Text PDFWe report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2017
We identified and characterized a series of pyrrole amides as potent, selective Ca3.2-blockers. This series culminated with the identification of pyrrole amides 13b and 26d, with excellent potencies and/or selectivities toward the Ca3.
View Article and Find Full Text PDFWe describe the discovery and optimization of new, brain-penetrant T-type calcium channel blockers. We present optimized compounds with excellent efficacy in a rodent model of generalized absence-like epilepsy. Along the fine optimization of a chemical series with a pharmacological target located in the CNS (target potency, brain penetration, and solubility), we successfully identified an Ames negative aminopyrazole as putative metabolite of this compound series.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2017
We identified and characterized a series of pyrazole amides as potent, selective Ca3.1-blockers. This series culminated with the identification of pyrazole amides 5a and 12d, with excellent potencies and/or selectivities toward the Ca3.
View Article and Find Full Text PDF