Publications by authors named "Sylvia Quemener-Redon"

Article Synopsis
  • Variants of uncertain significance (VUS) present challenges in diagnosing rare diseases, and episignatures have emerged as potential biomarkers to help classify these variants.
  • A study analyzed DNA methylation data from different groups, including carriers of pathogenic variants and healthy controls, using a k-nearest-neighbour classifier to assess the predictive abilities of various episignatures.
  • Results revealed that while some signatures (ATRX, DNMT3A, KMT2D, NSD1) achieved 100% sensitivity, others (CREBBP-RSTS, CHD8) showed lower performance, indicating that not all episignatures are equally reliable for diagnostic use and highlighting the need for further validation with larger sample sizes.
View Article and Find Full Text PDF

Novel variants associated with chronic pancreatitis are being increasingly reported. However, most studies have so far only analyzed point mutations and small insertions or deletions. Here we report the characterization of two distinct deletions of the CTRC locus.

View Article and Find Full Text PDF

We report here a de novo 16q24.1 interstitial duplication in a woman with a severe phenotype consistent with mental retardation, spastic paraplegia, severe epilepsy, a narrow and arched palate, malar hypoplasia, little subcutaneous fat and arachnodactyly. Although conventional karyotyping was found to be normal, array-CGH detected a small duplication on chromosome 16.

View Article and Find Full Text PDF

Constitutional deficiency in factor XI (FXI) is a rare bleeding disorder in the general population, with the exception of Ashkenazi Jews. During the last decade, the detection of FXI-deficient patients has shifted from clinical screening identifying mostly severe bleeders to biological screening combining findings of prolonged activated partial thromboplastin time and FXI coagulation activity (FXI:C) below 50 U/dl. The goal of this study was to determine the molecular basis of FXI deficiency in western Brittany, France.

View Article and Find Full Text PDF

Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development.

View Article and Find Full Text PDF