The axon initial segment (AIS) is the site of action potential generation and a locus of activity-dependent homeostatic plasticity. A multimeric complex of sodium channels, linked via a cytoskeletal scaffold of ankyrin G and beta IV spectrin to submembranous actin rings, mediates these functions. The mechanisms that specify the AIS complex to the proximal axon and underlie its plasticity remain poorly understood.
View Article and Find Full Text PDFRegulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking in response to neuronal activity is critical for synaptic function and plasticity. Here, we show that neuronal activity induces the binding of ephrinB2 and ApoER2 receptors at the postsynapse to regulate de novo insertion of AMPA receptors. Mechanistically, the multi-PDZ adaptor glutamate-receptor-interacting protein 1 (GRIP1) binds ApoER2 and bridges a complex including ApoER2, ephrinB2, and AMPA receptors.
View Article and Find Full Text PDFCoordinated migration of neurons in the developing and adult brain is essential for its proper function. The secreted glycoprotein Reelin (also known as RELN) guides migration of neurons by binding to two lipoprotein receptors, the very-low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2, also known as LRP8). Loss of Reelin function in humans results in the severe developmental disorder lissencephaly and it has also been associated with other neurological disorders such as epilepsy, schizophrenia and Alzheimer's disease.
View Article and Find Full Text PDF