Publications by authors named "Sylvia Moeckel"

Glioblastomas are highly malignant brain tumors that derive from brain-tumor-initiating cells (BTICs) and can be subdivided into several molecular subtypes. Metformin is an antidiabetic drug currently under investigation as a potential antineoplastic agent. The effects of metformin on glucose metabolism have been extensively studied, but there are only few data on amino acid metabolism.

View Article and Find Full Text PDF

Brain-tumor-initiating cells (BTICs) of proneural and mesenchymal origin contribute to the highly malignant phenotype of glioblastoma (GB) and resistance to current therapies. BTICs of different subtypes were challenged with oxidative phosphorylation (OXPHOS) inhibition with metformin to assess the differential effects of metabolic intervention on key resistance features. Whereas mesenchymal BTICs varied according to their invasiveness, they were in general more glycolytic and less responsive to metformin.

View Article and Find Full Text PDF
Article Synopsis
  • Standardized monitoring of BCR::ABL1 mRNA levels is crucial for managing chronic myeloid leukemia (CML) patients, as established by the European Treatment and Outcome Study for CML (EUTOS) from 2016 to 2021.
  • The study tested secondary, lyophilized BCR::ABL1 reference panels to help local laboratories validate their tests and convert results to the International Scale, leading to significant improvements in the validation of conversion factors (CFs).
  • The findings showed that most participating laboratories could effectively monitor molecular response in samples, highlighting that secondary reference panels provide a reliable method for quality assurance in CML testing.
View Article and Find Full Text PDF

Receptor tyrosine kinase (RTK) pathways are known to play an important role in tumor cell proliferation of glioblastoma (GBM). Cellular determinants of RTK-inhibitor sensitivity are important to optimize and tailor treatment strategies. The stress response gene activating transcription factor 4 (ATF4) is involved in homeostasis and cellular protection.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and malignant type of primary brain tumor and associated with a devastating prognosis. Signal transducer and activator of transcription number 3 (STAT3) is an important pathogenic factor in GBM and can be specifically inhibited with Stattic. Metformin inhibits GBM cell proliferation and migration.

View Article and Find Full Text PDF

To this day, glioblastoma (GBM) remains an incurable brain tumor. Previous research has shown that metformin, an oral anti-diabetic drug, may decrease GBM cell proliferation and migration especially in brain tumor initiating cells (BTICs). As transforming growth factor β 2 (TGF-β2) has been reported to promote high-grade glioma and is inhibited by metformin in other tumors, we explored whether metformin directly interferes with TGF-β2-signaling.

View Article and Find Full Text PDF

Background: In a previous publication we introduced a novel approach to identify genes that hold predictive information about treatment outcome. A linear regression model was fitted by using the least angle regression algorithm (LARS) with the expression profiles of a construction set of 18 glioma progenitor cells enhanced for brain tumor initiating cells (BTIC) before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed predicting therapy-induced impairment of proliferation in vitro.

View Article and Find Full Text PDF

Background: High-grade gliomas are amongst the most deadly human tumors. Treatment results are disappointing. Still, in several trials around 20% of patients respond to therapy.

View Article and Find Full Text PDF

Versican is a large chondroitin sulphate proteoglycan produced by several tumor cell types, including high-grade gliomas. Increased expression of distinct versican isoforms in the extracellular matrix plays a role in tumor cell growth, adhesion and migration. We have recently shown that transforming growth factor (TGF-beta)2, an important modulator of glioma invasion, interacts with versican isoforms V0/V1 during malignant progression of glioma in vitro.

View Article and Find Full Text PDF

Background: An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: