Fungal siderophores are known to be involved in iron acquisition and storage, as well as pathogenicity of mammals and plants. As avirulent plant symbionts, Trichoderma spp. colonize roots and induce resistance responses both locally and systemically.
View Article and Find Full Text PDFCyclic lipopeptides (cLP) and especially surfactins produced by Bacillus spp. trigger biofilm formation and root colonization and are crucial for biocontrol activity and systemic resistance in plants. Bacillus atrophaeus 176s isolated from the moss Tortella tortuosa produces the cLP fengycins, iturins and surfactins, possesses antifungal activities and can protect tomato, lettuce and sugar beet against Rhizoctonia solani infection.
View Article and Find Full Text PDFStructure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool FragExtract was developed and evaluated with LC-HRMS/MS spectra of both native (12)C- and uniformly (13)C (U-(13)C)-labeled analytical standards of 10 fungal substances in pure solvent and spiked into fungal culture filtrate of Fusarium graminearum respectively.
View Article and Find Full Text PDFDue to low iron availability under environmental conditions, many microorganisms excrete iron-chelating agents (siderophores) to cover their iron demands. A novel screening approach for the detection of siderophores using liquid chromatography coupled to high-resolution tandem mass spectrometry was developed to study the production of extracellular siderophores of 10 wild-type Trichoderma strains. For annotation of siderophores, an in-house library comprising 422 known microbial siderophores was established.
View Article and Find Full Text PDFMycoparasitic Trichoderma species are applied as biocontrol agents in agriculture to guard plants against fungal diseases. During mycoparasitism, Trichoderma directly interacts with phytopathogenic fungi, preceded by a specific recognition of the host and resulting in its disarming and killing. In various fungal pathogens, including mycoparasites, signalling via heterotrimeric G proteins plays a major role in regulating pathogenicity-related functions.
View Article and Find Full Text PDFGalpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T.
View Article and Find Full Text PDF