The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model.
View Article and Find Full Text PDFInfluenza, a respiratory disease mainly caused by influenza A and B, viruses of the , is still a burden on our society's health and economic system. Influenza A viruses (IAV) circulate in mammalian and avian populations, causing seasonal outbreaks with high numbers of cases. Due to the high variability in seasonal IAV triggered by antigenic drift, annual vaccination is necessary, highlighting the need for a more broadly protective vaccine against IAV.
View Article and Find Full Text PDFThe COVID-19 pandemic caused significant human health and economic consequences. Due to the ability of SARS-CoV-2 to spread rapidly and to cause severe disease and mortality in certain population groups, vaccines are essential for controlling the pandemic in the future. Several licensed vaccines have shown improved protection against SARS-CoV-2 after extended-interval prime-boost immunizations in humans.
View Article and Find Full Text PDFThe SARS-CoV-2 spike (S) glycoprotein is synthesized as a large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as a candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain.
View Article and Find Full Text PDFThe urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014-2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen.
View Article and Find Full Text PDFSevere acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S).
View Article and Find Full Text PDFNipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV), a novel infectious agent causing severe respiratory disease and death in humans, was first described in 2012. Antibodies directed against the MERS-CoV spike (S) protein are thought to play a major role in controlling MERS-CoV infection and in mediating vaccine-induced protective immunity. In contrast, relatively little is known about the role of T cell responses and the antigenic targets of MERS-CoV that are recognized by CD8+ T cells.
View Article and Find Full Text PDFThe highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes and .
View Article and Find Full Text PDFWest Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans. We tested a recombinant modified vaccinia virus Ankara (MVA) vaccine expressing full-length MERS-CoV spike (S) glycoprotein by immunizing BALB/c mice with either intramuscular or subcutaneous regimens. In all cases, MVA-MERS-S induced MERS-CoV-specific CD8(+) T cells and virus-neutralizing antibodies.
View Article and Find Full Text PDFUnlabelled: Immunization with modified vaccinia virus Ankara (MVA) can rapidly protect mice against lethal ectromelia virus (ECTV) infection, serving as an experimental model for severe systemic infections. Importantly, this early protective capacity of MVA vaccination completely depends on virus-specific cytotoxic CD8(+) T cell responses. We used MVA vaccination in the mousepox challenge model using ECTV infection to investigate the previously unknown factors required to elicit rapid protective T cell immunity in normal C57BL/6 mice and in mice lacking the interferon alpha/beta receptor (IFNAR(-/-)).
View Article and Find Full Text PDF